Simulation languages

Prof. Cesar de Prada

Dpt. Systems Engineering and Automatic Control EII, University of Valladolid, Spain
prada@autom.uva.es

Outline

\checkmark Process Simulation
\checkmark Motivation
\checkmark Types of languages

- Block oriented
- Expression oriented
- Equation oriented (Modelling languages)
- Physics based
\checkmark How model equations are treated in Modelling languages (EcosimPro)

Digital Simulation

\checkmark Methods and tools oriented to "imitate" or predict the responses of a systems against certain changes or "stimulus" using a computer.

Uses of Simulation

\checkmark Study of a process, what if...? analysis
\checkmark Design (process, control,...)
\checkmark Testing a control system before actual implementation in the plant
\checkmark Personnel training
\checkmark Operation optimization
\checkmark Essays in a virtual plant

Advantages of the simulation

\checkmark Perform changes that, if implemented in the process, will be

- Very costly,
o Too slow / fast
- dangerous, etc.
\checkmark Reproduces the experiment as many time as desired under the same conditions
\checkmark Saves time
\checkmark Provides safety
\checkmark Allows sensitivity studies
\checkmark Provides a model that can be used for many purposes
\checkmark Allows experimenting with systems that are not built yet

Models

\checkmark Simulation is based on mathematical models of the processes.
\checkmark Mathematical models are set of equations relating the variables of a process and being able to provide an adequate representation of its behaviour.
\checkmark They are always approximations of the real world
\checkmark Adequacy of a model depends on their intended use
\checkmark There are a wide variety of models according to the processes they represent and their aims.

Adequate representation

fidelity to the physical asset and facility of use in the intended application

State space models

$$
\begin{aligned}
& \frac{\mathrm{dr} x(\mathrm{t})}{\mathrm{dt}}=\mathrm{f}(\mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}), \mathrm{t}) \\
& \mathrm{y}(\mathrm{t})=\mathrm{g}(\mathrm{x}, \mathrm{u}(\mathrm{t}), \mathrm{t})
\end{aligned}
$$

Manipulated variables and disturbances

Model responses
x States

Stages of a simulation project

\checkmark Study the process
\checkmark Set the simulation aims

- Specify the relevant variables
\checkmark Develop the model according to the simulation aims.
\checkmark Code the model in a simulation language
\checkmark Set the independent variables and choose the numerical solvers
\checkmark Exploit the results of the simulation

Concepts

$$
\begin{array}{ll}
\underbrace{R}_{V} & \begin{array}{l}
\text { Process -> Model } \\
V-I R=0 \text { ó } I=V / R ~ o ́ ~ V ~
\end{array}=I R . . .
\end{array}
$$

Assignment of computational causality

$$
\mathrm{V}=\mathrm{I} * \mathrm{R}
$$

Experiment

$$
\mathrm{R}=10, \mathrm{I}=2
$$

Numerical solution

$$
V=2 * 10=20
$$

Simulation Languages

Computer program providing tools for:
\checkmark Describing the model and assigning computational causality
\checkmark Defining the experiments to be performed
\checkmark Solving numerically the set of equations
\checkmark Visualizing the results and communicating with the external world

Advantages

\checkmark Provide support in all phases of model development and exploitation
\checkmark Allows concentrating in the problem and the results, not spending time and efforts in programming
\checkmark Gives reliability to the numerical results
\checkmark Allows saving time
\checkmark Allows the non-expert in computing or numerical methods to solve complex models

First principles models

\checkmark Based on knowledge of the process and nature laws (Physics, chemistry,...)
\checkmark Sometimes are difficult to formulate from the scratch, requiring trained people, large development times, costs,..
\checkmark They need to be tested and validated
\checkmark This may limit their use in many fields (Design, decision making, training,....
\checkmark But,....which is the cost of non-using them?

Solution: Libraries of models

\checkmark Models are built linking the tested modules or components of a model library
\checkmark Each component of the library contains the mathematical model of a process and can be configured by parameterization to fit the user needs
\checkmark Each component can be linked to others by an interface or port in order to built more complex models

Physical properties data bases and good user interfaces are also required

Model Libraries

\checkmark Sets of components representing different processes, devices, etc.
\checkmark Each one contains its mathematical model and connections to the external world
\checkmark Components can be parameterized to adapt them to the user requirements

Model Libraries

Model Libraries

\checkmark Modular modelling:

- Facilitates the re-use of models in different applications
- Facilitates the use of simulation to those non-experts in simulation, but knowing the system to be simulated
\checkmark Modularity: Independent description of every module of the library
\checkmark Abstraction: Use the modules without knowing its internal details (model equations, etc.)
\checkmark Hierarchy: New modules can be built by linking the existing ones to the way they support modularity
- Block oriented languages
- Expression oriented languages CSSL’67
- Equation oriented (Modelling languages)
- Automated modelling (SIMPD)

Block oriented languages

Simulink blocks
Tutsim blocks

Each block has fix input and output variables and contains equations or code to compute the value of the output variables as a function of the value of the input ones

Blocks or macros

\checkmark Encapsulated code that is not manipulated by the simulation environment
\checkmark Fix computational causality, imposed by the inputs and outputs of the block
\checkmark Connections between blocks by linking input - output variables
\checkmark Block diagrams do not mimic the physical layout but the mathematical one

Simulink

Implementation of the model is done using predefined blocks that carry out specific operations and are linked together to perform the operations of the model equations

Physical system

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{C}}=\left(\mathrm{U}-\mathrm{U}_{\mathrm{C}}\right) / \mathrm{R} 1 \\
& \mathrm{U}_{\mathrm{L}}=\mathrm{U}-\mathrm{i}_{\mathrm{L}} \times \mathrm{R} 2 \\
& \frac{\mathrm{dU}_{\mathrm{C}}}{\mathrm{dt}}=\mathrm{i}_{\mathrm{C}} / \mathrm{C} \\
& \frac{\mathrm{di}}{\mathrm{~L}} \mathrm{dt}
\end{aligned}=\mathrm{U}_{\mathrm{L}} / \mathrm{L} .
$$

Model equations

Simulink

The block diagram is built graphically from the blocks of the library

Block oriented languages: Simulink

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{C}}=\left(\mathrm{U}-\mathrm{U}_{\mathrm{C}}\right) / \mathrm{R} 1 \\
& \mathrm{U}_{\mathrm{L}}=\mathrm{U}-\mathrm{i}_{\mathrm{L}} \times \mathrm{R} 2 \\
& \frac{\mathrm{dU}}{\mathrm{C}} \\
& \mathrm{dt}
\end{aligned}=\mathrm{i}_{\mathrm{C}} / \mathrm{C}, \frac{\mathrm{di}}{\mathrm{dt}}=\mathrm{U}_{\mathrm{L}} / \mathrm{L}
$$

Simulink

With block oriented languages, the user describes the mathematical model, not the physical system

Physical system

Block diagram

Structure

CSMP 1130
SADS
DSL/90
....
EASY-5 TUTSIM
Simulink

Block's computational order

Computational order $\quad 1,9,8,2,3,5,4,7,6,9,8$States or known values initially

1 Starting from the blocks with known initial values, check which blocks can be executed as all their inputs are known.

2 Write them down in a list and iterate with the new set of known blocks until all blocks are used up.

3 If any new block is added to the list in a full iteration over all blocks, an algebraic loop is detected.

Integration architecture

Start from initial value of integrators or outputs of blocks without inputs

Compute the output of every block according to the ordering previously determined. Compute the inputs of the integrators,

Integrate the ODE in order to obtain the value of the states at time $\mathrm{t}+\mathrm{h}$

Stop time?

Algebraic loops

$$
\mathrm{z}=5\left(\sin (\mathrm{t})-\mathrm{e}^{\mathrm{z}}\right)
$$

A special block need to be added. Iterations until convergence are required

Hierarchical blocks

Modularity

Hierarchy

Block oriented languages

\checkmark There are easy to use and intuitive
\checkmark Modular and hierarchical architectures
\checkmark Model description does not match neither the physical process not the equations.
\checkmark There are difficult to build and debug in case of models with a large number of blocks
\checkmark Fix computational causality
\checkmark Slow: interpreters
\checkmark Algebraic loops must be explicitly solved with additional blocks
\checkmark Limited separation model-experiment

Expression oriented languages

Standard CSSL’67 (Simulation 1967 Vol.9, pp.281303)

Direct declaration of the model equations
Model description is given a temporal structure
Separation model-experiment: command language
Code generators, compiled simulation code: Speed
Open to the outside world: Call...
Reuse of code: Macros

CSSL’67

Description model structure

Fix
computational causality

Simulation code similar to the mathematical model

Dynamic
Derivative
End equations
Discrete
End

End

Terminal
End
End

Continuous

Discrete equations

Final computations.
Code executed once at tstop

Initial

Dynamic

End

Expressions evaluated at certain times (Synchronous or asynchronous modes) or when a event takes place.

Discrete
End
End
Terminal
End
End

Expressions evaluated and integrated every integration interval

Global variables
Transfers to initial region are possible to create loops.

Language

Equations similar to Fortran: exp, sin , IF THEN ELSE,...
Primitives: BOUND, REALP, DELAY,....
Function generators: SIN, PULSE,...
Tables 2D \& 3D
Implicit equations: IMPLC
Integrators: INTEG, several methods: Stiff, DASSL,...
Event and discontinuities treatment: SCHEDULE, INTERVAL,..

External calls: Call...

Equation ordering

Automatic ordering of the equations following an algorithm similar to the one used with blocks

Procedural regions with fix sequential order

$$
\begin{array}{ll}
\text { CONSTANT } \mathrm{R}=4 . \\
\mathrm{V}=\operatorname{INTEG}(\mathrm{F}, 0.1) \\
\mathrm{F}=\mathrm{S}+\exp (\mathrm{R}) \\
\mathrm{S}=3.14 * \mathrm{R} * \mathrm{R}
\end{array} \quad \begin{aligned}
& \text { CONSTANT } \mathrm{R}=4 . \\
& \mathrm{S}=3.14 * \mathrm{R} * \mathrm{R} \\
& \mathrm{~F}=\mathrm{S}+\exp (\mathrm{R}) \\
& \mathrm{V}=\operatorname{INTEG}(\mathrm{F}, 0.1)
\end{aligned}
$$

Fix computational causality

CSSL’67 ACSL

```
program prueba
initial
constant x0=0.1, tmax=3.
cinterval cint=0.35
algorithm ialg=3
end
derivative
    constant tau=2.
    z = 5* x - 3*y
    x = integ(tau* y + sin(x), x0)
    y = bound(-1.,1.,x)
    termt(t.gt.tmax)
end
end
```


ACSL

Modularity

A modular approach provides support to the description of a complex system using predefined sub-systems
Helps library maintenance
Helps team working
Helps improving the readability and use of the simulation code

Macros

Macros encapsulate simulation code to facilitate its repetitive use in different places of the model description

There are different from subroutines: The code of a macro is expanded and analysed with the other equations before compilation

Valve(u,1)

Valve(aper,6)

```
MACRO Valve (a,n)
    dp&n=(pe&n - ps&n)/den
    q&n = a*sqrt(dp&n)
MACRO END
```


Macros

Valve(u,1)

Valve(aper,6)
dp1=(pe1-ps1)den
q1= u^{*} sqrt(dp1)
dp6=(pe6 - ps6)/den q6 $=$ aper*sqrt(dp6)

```
MACRO Valve (a,n)
    dp&n=(pe&n - ps&n)/den
    q&n = a*sqrt(dp&n)
MACRO END
```

Fix computational causality
It is difficult to operate with parameters in long chain calls

Global variables

Modelling Languages

- Direct declaration of the model equations
- Model description is given a temporal structure
- Separation model-experiment
- Object oriented
- Code generators, compiled simulation code
- True modular modelling: They do not have fix computational causality

Example: DC Motor

Structure of a model

```
COMPONENT motorDC
    DATA
        REAL J = 2 "momento de inercia"
        REAL K = 3 "constante de par"
        REAL f = 0.01 "friccion"
        REAL R = 0.1 "resistencia"
        REAL Ke = 0.5
        Description of the model
        is similar to its
        mathematical formulation
    DECLS
            REAL T "par"
            REAL w "velocidad"
    INIT
        W = 30 -- initial condition
    DISCRETE
        WHEN (w > 1500) THEN
            T = 20
        END WHEN
    CONTINUOUS
        J*W'= K*i - f*W - T
        v = R*i + Ke*W
END COMPONENT
```


Separation model- Experiment

COMPONENT motorDC		Component	
DATA			
REAL $\mathrm{J}=2$	"momento de inercia"	EXPERIMENT $\exp 1$ ON motorDC.motor2	
REAL K $=3$	"constante de par"	DECLS	
REAL $f=0.01$	"friccion"	DECLS	
REAL $\mathrm{R}=0.1$	"resistencia"	INIT -- set initial values for variables	
REAL Ke $=0.5$		w $=0$	
DECLS		BOUNDS -- set expressions for	
REAL T	"par"	boundary variables: $\mathrm{v}=\mathrm{f}(\mathrm{t}, . .$.	
REAL w	"velocidad"	$v=10$	
		$\mathrm{T}=2$	
INIT W	initial condition	BODY	
W = 30		REPORT_TABLE("reportAII", " * ")	
DISCRETE		TIME $=0$	
WHEN (w > 1500) THEN		TSTOP = 5	
END WHEN		CINT $=0.1$	
CONTINUOUS		INTEG()	
J*W'= K*i - f*W - T		END EXPERIMENT	
$v=R * i+K *^{*} W$		Experiment	

Object oriented modelling

ENCAPSULATION: A component

 hides the complexity of the model as only a certain part of the model is made publicGENERICNESS: generic parameters/modes that are given values only when the component is going to be used

Child

INHERITANCE: A
component can inherit the behaviour and properties of other(s)

Connecting modules by ports

```
COMPONENT motorDC
PORTS
    IN Elec AL
    IN Mech rot eje ports
DATA
    REAL J = 2
    REAL K = 3
    REAL f = 0.01
    REAL R = 0.1
    REAL Ke = 0.5
DECLS
    REAL T
    REAL w "velocidad"
    "par"
CONTINUOUS
```

```
    J*W'= K*AL.i - f*W - T
```

 J*W'= K*AL.i - f*W - T
 AL.v = R*AL.i + Ke*W
 AL.v = R*AL.i + Ke*W
 T = eje.T
 T = eje.T
 w = eje.omega
    ```
    w = eje.omega
```

END COMPONENT
\longleftarrow Component
PORT Elec
EQUAL REAL v
"Electrical pin"
"Potential (V)"
SUM REALi "Current (amp)"
END PORT
Component 2

Model

Hierarchical models

Modular modelling

Block oriented languages, do not allow true modular modelling, because they impose the computational causality at the model description stage

Modelling languages:

\checkmark They were developed to facilitate model reuse
\checkmark They do not have fix computational causality
\checkmark DYMOLA, GPROMS, MODELICA, OMOLA, ECOSIMPRO, ABACUS, JACOBIAN, ASPEN DYNAMICS...

Code to be executed depends on the aims $\mathbf{S} 2$ and boundaries of the problem

If p_{1} and p_{2} are given:

If p_{1} and q are given:

$$
\mathrm{q}=\mathrm{k} \sqrt{\mathrm{p}_{1}-\mathrm{p}_{2}}
$$

$$
\mathrm{p}_{2}=\mathrm{p}_{1}-\frac{\mathrm{q}^{2}}{\mathrm{k}}
$$

Aim: To have a description of the model of a component independent from its use in a specific case.

Computational Causality

Different to the equation ordering

Example: Two different implementations required for the resistor

Computational causality assignment: Which equation should be used to compute every unknown variable?
Modelling languages perform the assignment analysing the whole set of model equations as a function of the known boundaries.

$$
\mathrm{V}=\mathrm{I} R
$$

Modelling Languages

- A model of a system is composed using a high level description, linking pre-defined modules representing sub-systems.
- Each module contains the mathematical description of a subsystem
- Each module is linked to others through an interface or port, in the same way as in the physical world.
- BUT, the mathematical model of the system is generated later on, manipulating the whole set of equations as a function of the chosen systems boundaries.

Modelling Languages

Model and code generation

$$
\begin{aligned}
& \mathrm{i} 1=\mathrm{i} 2+i 3 \\
& \mathrm{v} 1-\mathrm{vc}=\mathrm{i} 1 * \mathrm{R} 1 \\
& \mathrm{vc}-\mathrm{v} 2=\mathrm{i} 2 \\
& \mathrm{vc}-\mathrm{R} 2 \\
& \mathrm{vc}=\mathrm{i} 3
\end{aligned}
$$

Analysis of the whole set of equations

EcosimPro

\checkmark First version 1992, Unix, ESA
\checkmark First version under Windows: 1999
\checkmark Object oriented tool
\checkmark Support continuous, discrete and discrete event processes
\checkmark Models are built by textual description of from graphical libraries.
\checkmark Provides a software development environment
\checkmark Open code, C++, ActiveX, OPC, FMI,...
\checkmark Version 5 on , 2013, multiplatform QT
\checkmark Proosis

EcosimPro

Graphical environment

Modelling steps

Library of non causal models

Model with assigned computational causality

】
Experiment definition and Generation of C++ code

Model built linking components

】

Analysis and computational causality of the whole set of equations (Partition)

Simulation Code execution

Modelling Languages

Analysis

Model analysis and assignment of computational causality (Partition generation)

1. Specify the boundary conditions
2. Is it feasible to solve the problem with the specified boundaries? (Detection of structural singularities, Maximum Transversal Algorithm)
3. Inadequate Boundaries
4. High index models
5. Specify the equation that will be used to compute every variable and stablish the order in which the equations will be used (BLT Algorithm)
6. Whenever possible, work out every variable symbolically
7. Identify the possible algebraic loops (Select tearing variables)
8. The partition is finished and ordered model equations are generated ready to be solved.

MaximumTransversal Algorithm

The number of required boundary conditions is determined as the difference between the number of variables and the number of equations. Once a set of boundary variables is proposed by the user, its validity is cheeked with the Maximum Transversal algorithm

7 unkowns:
vi, v2, v3, vc, il, id, is
3 data: R1, R2, R3
4 equations
il = i2 + is
vi - vc = il * R1
vc - v2 = in * R2
3 boundary conditions
vc - v3 = is * R3

MaximumTransversal Algorithm

Is the system with the selected boundary variables structurally correct?
A necessary condition for a model to be mathematically correct is the existence of a one to one correspondence between equations and variables.

Mathematically correct system

System with a structural singularity

```
Ecuaciones
Variables
f1(x1)= 0 ----------- x1
f2(x1,x2,x3)= 0 .-... x2
f3(x1,x3)= 0 -.-.-.-.. x3
```

```
Ecuaciones
Variables
f1(x1)= 0 -----------> x1
f2(x1,x2,x3)= 0 ---.* x2
f3(x1)= 0 -------- ??
```


MaximumTransversal Algorithm

Example: Valid boundary variables: v1,v2,v3

Maximum Transversal Algorithm

Example: Valid Boundary variables: vc,v2,v3

But the simulation corresponds to a different problem

MaximumTransversal Algorithm

Example: Wrong boundary variables : i1,i2,i3

MaximumTransversal Algorithm

In order to analyse the goodness of the selected boundary variables, a matrix is formed with two entries: the rows represent the equations and boundary variables, while the columns contain the model variables. This incidence matrix has a one in a element if the variable considered appears in the corresponding equation and has a zero otherwise.

The Maximum transversal algorithm interchanges the matrix columns until all elements in the diagonal are ones. Then the problem is structurally solvable.

MaximumTransversal Algorithm

\checkmark Which model variables are included in the analysis performed by the Maximum Transversal algorithm?

$$
\mathrm{x}^{\prime}=\mathrm{dx} / \mathrm{dt}=\mathrm{f}(\mathrm{x}, \mathrm{t})
$$

\checkmark State variables x (which appear under the derivative sign) are considered known variables in the analysis because an initial value has to be assigned to them and, consequently, they are not included in the matrix of the Maximum Transversal.
\checkmark Derivatives of the state variables x ' are considered as unknown variables that must be evaluated for the integration of the system and, consequently, are in cluded in the matrix.

MaximumTransversal Algorithm

\checkmark The boundary conditions are selected freely by the user, but it is possible to suggest him a coherent set or check the user selection.
\checkmark When suggesting a set of boundary variables, a first choice refers to the variables assigned to unconnected ports, after checking that they satisfy the maximum transversal algorithm.
\checkmark If this choice fails, another set is selected iterating on the remaining variables.

Model analysis

\checkmark Have the model equations the adequate mathematical format to be solved?
\checkmark The Maximum Transversal algorithm fails when a high index problem is present.

$$
\begin{aligned}
& \frac{\mathrm{dx}_{1}}{\mathrm{dt}}=\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{u}, \mathrm{t}\right) \\
& \frac{\mathrm{dx}_{2}}{\mathrm{dt}}=\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{u}, \mathrm{t}\right)
\end{aligned}
$$

$$
g\left(x_{1}, x_{2}, u\right)=0
$$

u boundary variable

DAEs / ODEs Models

\checkmark A set of Ordinary Differential Equations, where the derivatives of the state variables appear explicitly, as functions of the states and of known functions of time is denoted as ODE.

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{f}(\mathrm{x}, \mathrm{u})
$$

\checkmark When the derivatives do not appear as explicit functions, the system of equations is called a set of DAEs, Differential Algebraic Equations. This includes implicit differential equations and coupled sets of differential and algebraic equations. In general:

$$
F(\dot{x}, x, u)=0
$$

Index Problems

\checkmark Sometimes a set of DAEs can be converted to a set of ODEs managing the equations, nevertheless, if the matrix $\partial \mathrm{F} / \partial \dot{\mathrm{x}}$ is singular, the transformation is not possible unless some of the equations are differentiated with respect to time.

$$
\mathrm{F}(\dot{\mathrm{x}}, \mathrm{x}, \mathrm{u})=0 \quad \longleftrightarrow \quad \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{f}(\mathrm{x}, \mathrm{u})
$$

\checkmark The index of a DAE is the number of times needed to differentiate the DAEs to get a system of ODEs.
\checkmark A differential index of 1 is called low index, while it is called High index if it is 2 or larger.
\checkmark In systems with index 1 or larger, the maximum transversal algorithm fails in finding a feasible set of boundary conditions.

Index problems

\checkmark Index problems appear many times associated to the formulation of a DAE model where the state variables cannot be computed freely, but are constrained by some bond equations.

$$
\begin{array}{ll}
\frac{\mathrm{d} \mathrm{x}_{1}}{\mathrm{dt}}=\mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{u}, \mathrm{t}\right) & \\
\frac{\mathrm{d} \mathrm{x}_{2}}{\mathrm{dt}}=\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{u}, \mathrm{t}\right) & \begin{array}{l}
\text { In the bond } \\
\text { equations, all } \\
\text { variables are } \\
\text { known }
\end{array} \\
\mathrm{g}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{u}\right)=0 &
\end{array}
$$

\checkmark Some integration methods may not consider these bonds and, consequently, they fail if applied to a high index problem.
\checkmark In particular, we cannot assign initial values to the states freely, as they must satisfy the bond equations.

Index problems: Examples

High index problems can be generated when linking together two components of a library because of the bond equations added by the ports:

$$
\begin{aligned}
& \mathrm{J}_{1} \frac{\mathrm{~d} \omega_{1}}{\mathrm{dt}}=\ldots+\mathrm{T}_{1}+\mathrm{T}_{2}+\ldots \quad \mathrm{J}_{2} \frac{\mathrm{~d} \omega_{2}}{\mathrm{dt}}=\ldots+\mathrm{T}_{1}+\mathrm{T}_{2}+\ldots \\
& \omega_{1}=\omega_{2} \quad \text { Equation generated by the mechanical port }
\end{aligned}
$$

Index problems: Examples

Index problems can be generated when linking together two components of a library because of the bond equations added by the ports:

$$
\begin{aligned}
& \mathrm{C}_{1} \frac{\mathrm{dV}_{1}}{\mathrm{dt}}=\mathrm{i}_{1} \\
& \mathrm{C}_{2} \frac{\mathrm{dV}_{2}}{\mathrm{dt}}=\mathrm{i}_{2}
\end{aligned}
$$

Index problems: Examples

$\mathrm{V}_{1}, \mathrm{~V}_{2}$ are state variables as they appear under the derivative sign. I_{0} is chosen as boundary variable

Unknown variables: $\mathrm{V}_{1}{ }^{\prime}, \mathrm{V}_{2}{ }^{\prime}, \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{~V}_{0}$ Known variables: $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{I}_{0}$
$\mathrm{C}_{1} \mathrm{~V}_{1}{ }^{\prime}=\mathrm{i}_{1}$
$\mathrm{C}_{2} \mathrm{~V}_{2}{ }^{\prime}=\mathrm{i}_{2}$
$\mathrm{V}_{1}=\mathrm{V}_{2} \quad$??
$\mathrm{I}_{0}=\mathrm{i}_{1}+\mathrm{i}_{2}$
$\mathrm{V}_{0}=\mathrm{V}_{2}$

Only 4 equations contain the 5 unknown variables. This structure implies that there is no solution to the assignment problem with the maximum transversal algorithm

5 variables and 5 equations
but the bond equation $V_{1}=V_{2}$ creates a structural singularity

High Index problems: Examples

\checkmark Sometimes high index problems appear due to the formulation of the problem, that does not follows the physical causality but corresponds to other problems like, e.g. control

$$
\begin{aligned}
& \mathrm{F}=\mathrm{m} \frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}} \\
& \mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{t} / 10} \sin (\mathrm{t})
\end{aligned}
$$

Which is the force that must be applied to a particle in order to move it according to a certain

There is a boundary condition specified on a state variable pre-specified trajectory?

High Index problems

\checkmark The Maximum Transversal algorithm fails when a high index problem is present. Example:

```
3 Equations
F = m * \(\mathrm{v}^{\prime}\)
\(x^{\prime}=\mathrm{V}\)
\(x=\exp (-T I M E / 10) \quad\) * \(\sin (T I M E)\)
```

Known variables
V \& X state variables
m data
3 Unknown variables
F, v', x^{\prime}

```
MAXIMUM TRANSVERSAL
\(\mathrm{F}=\mathrm{m} * \mathrm{v}^{\prime} \longrightarrow\)
\(\mathrm{X}^{\prime}=\mathrm{v}\)
\(\mathrm{x}=\exp \left(-\right.\) TIME/10) \({ }^{*} \sin (\) TIME \() ? ?\)
\(\mathbf{v}^{\prime}\)
\(\mathbf{x}^{\prime}\)
F
```

Three variables that appear only in two equations. The last one is useless for estimating F

Pantelides algorithm

\checkmark The Pantelides algorithm is used to transform high index problems into an equivalent lower index one.
\checkmark The algorithm adds new equations to the model obtained by differentiation of the ones that create the structural singularity (the bond equations), facilitating the application of the maximum transversal algorithm.

$$
\begin{aligned}
\frac{d x_{1}}{d t}-f_{1}\left(x_{1}, x_{2}, u\right)=0 & \frac{d x_{2}}{d t}-f_{2}\left(x_{1}, x_{2}, u\right)=0 \\
& \mathrm{~g}\left(\mathrm{x}_{1}, x_{2}, u\right)=0
\end{aligned} \quad \frac{\mathrm{dg}\left(x_{1}, x_{2}, u\right)}{d t}=0
$$

\checkmark As new equations are added, one should either incorporate more variables, or substitute the bond equations by its differentiate form to balance the number of equations and variables.
\checkmark The procedure is repeated until no structural singular set is found

Pantelides algorithm

\checkmark One option to balance equations and variables is to substitute the bond equations by its differentiated form

$$
\begin{array}{ll}
\frac{d x_{1}}{d t}-f_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{u}\right)=0 & \frac{\mathrm{dx}_{2}}{\mathrm{dt}}-\mathrm{f}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{u}\right)=0 \\
& \mathrm{~g}\left(\mathrm{x}_{2} \mathrm{x}_{2}, \mathrm{u}\right)=0
\end{array} \quad \frac{\mathrm{dg}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{u}\right)}{\mathrm{dt}}=0
$$

\checkmark Another option is not replacing the bond equations, but adding some states as new variables. As the initial values of the state equations cannot be chosen arbitrarily, some state variables involved in the bonds are not computed by integration of the corresponding differential equation, but from the bond equations. This implies that these state variables can be considered as unknown and added to the list for the analysis of the maximum transversal algorithm.

Example

V_{1} and V_{2} are state variables
I_{0} is chosen as boundary variable

Unknown variables: $\mathrm{V}_{1}{ }^{\prime}, \mathrm{V}_{2}{ }^{\prime}, \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{~V}_{0}$ Known variables: $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{I}_{0}$

Now there are 5 equations
$\mathrm{C}_{1} \mathrm{~V}_{1}{ }^{\prime}=\mathrm{i}_{1} \quad$ containing 5 unknown
$\mathrm{C}_{2} \mathrm{~V}_{2}{ }^{\prime}=\mathrm{i}_{2}$
$V_{1}{ }^{\prime}=V_{2}{ }^{\prime}$
$\mathrm{I}_{0}=\mathrm{i}_{1}+\mathrm{i}_{2}$
$\mathrm{V}_{0}=\mathrm{V}_{2}$
variables and the maximum transversal algorithm can be applied. But coherent initialization is required or critical information can be lost about the initial values

5 variables and 5 equations
$V^{\prime}=d \backslash d t$

Index one problem, as the bond equation $\mathrm{V}_{1}=\mathrm{V}_{2}$ has been differentiated only once

Example

$V_{1}^{\prime} V_{2}^{\prime} i_{1} \quad i_{2} \quad V_{0}$

| $\mathrm{C}_{1} \mathrm{~V}_{1}^{\prime}=\mathrm{i}_{1}$ | x | | | x | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}_{2} \mathrm{~V}_{2}^{\prime}=\mathrm{i}_{2}$ | | x | | x | |
| C_{2}^{\prime} | | | | | |
| $\mathrm{V}_{1}^{\prime}=\mathrm{V}_{2}^{\prime}$ | x | x | | | |
| $\mathrm{I}_{0}=\mathrm{i}_{1}+\mathrm{i}_{2}$ | | | x | x | |
| $\mathrm{V}_{0}=\mathrm{V}_{2}$ | | | | | x |

This implies that the problem is now structurally solvable. A different problem is finding the right assignment and order of calculus between variables and equations

Example

$\mathrm{C}_{1} \mathrm{~V}_{1}{ }^{\prime}=\mathrm{i}_{1}$
$\mathrm{C}_{2} \mathrm{~V}_{2}{ }^{\prime}=\mathrm{i}_{2} \quad$ Now there are 6
$\mathrm{V}_{1}=\mathrm{V}_{2} \quad$ equations containing 6
$\Rightarrow V_{1}{ }^{\prime}=\mathrm{V}_{2}{ }^{\prime} \quad$ unknown variables and the maximum
$\mathrm{I}_{0}=\mathrm{i}_{1}+\mathrm{i}_{2}$ transversal algorithm
$V_{0}=V_{2}$ can be applied
V_{2} is a state variable, but it will be considered as a variable as it will not be computed from integration of V_{2}, but from $V_{2}=V_{1}$ I_{0} is chosen as boundary variable

Unknown variables: $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{~V}_{0}, \mathrm{~V}_{2}$ Known variables: $\mathrm{V}_{1}, \mathrm{I}_{0}$

6 variables and 6 equations

Index one problem, as the bond equation $\mathrm{V}_{1}=\mathrm{V}_{2}$ has been differentiated only once

Pantelides algorithm

$$
\begin{array}{lllll}
\mathrm{V}_{1}^{\prime} & \mathrm{V}_{2}^{\prime} & \mathrm{i}_{1} & \mathrm{i}_{2} & \mathrm{~V}_{0}
\end{array} \mathrm{~V}_{2}
$$

$$
\mathrm{C}_{1} \mathrm{~V}_{1}^{\prime}=\mathrm{i}_{1}
$$

$$
\mathrm{C}_{2} \mathrm{~V}_{2}^{\prime}=\mathrm{i}_{2}
$$

$$
\mathrm{V}_{1}=\mathrm{V}_{2}
$$

$$
\mathrm{I}_{0}=\mathrm{i}_{1}+\mathrm{i}_{2}
$$

$$
\mathrm{V}_{0}=\mathrm{V}_{2}
$$

$$
V_{1}^{\prime}=V_{2}^{\prime}
$$

| X | | X | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | X | | X | | |
| | | | | | x |
| | | X | X | | |
| | | | | X | X |
| X | X | | | | |

$\rightarrow\left(\begin{array}{ll|l|l|l|l|}\hline \mathrm{V}_{1}^{\prime} & \mathrm{i}_{2} & \mathrm{~V}_{2} & \mathrm{i}_{1} & \mathrm{~V}_{0} & \mathrm{~V}_{2}^{\prime} \\ \hline & \mathrm{x} & & & \mathrm{x} & \\ \hline\end{array}\right.$

This implies that the problem is now structurally solvable. A different problem is finding the right assignment and order of calculus between variables and equations

Pendulum (Index 2 problem)

The structural singularity is created by inadequate modelling: using cylindrical coordinate, the problem can be described with a single variable θ without bonds

$$
\begin{array}{ll}
m \frac{d^{2} x}{d t^{2}}=-F \frac{x}{L} & \frac{d x}{d t}=v_{x} \\
m \frac{d^{2} y}{d t^{2}}=-F \frac{y}{L}-m g & \frac{d y}{d t}=v_{y} \\
x^{2}+y^{2}=L^{2} &
\end{array}
$$

There are 4 useful equations and 4 unknowns $x^{\prime}, y^{\prime}, v_{x}{ }^{\prime}, v_{y}^{\prime}$ ' but as we cannot initialize arbitrarily the four states, the bond equation is differentiated twice to find equations that provide the value of two of them instead of using integration of the corresponding differential equations.

Pendulum (Index 2 problem)

$$
\begin{array}{ll}
\mathrm{m} \frac{\mathrm{dv} \mathrm{v}_{\mathrm{x}}}{\mathrm{dt}}=-\mathrm{F} \frac{\mathrm{x}}{\mathrm{~L}} & \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{v}_{\mathrm{x}} \\
\mathrm{~m} \frac{\mathrm{dv} \mathrm{v}_{\mathrm{y}}}{\mathrm{dt}}=-\mathrm{F} \frac{\mathrm{y}}{\mathrm{~L}}-\mathrm{mg} & \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{v}_{\mathrm{y}}
\end{array}
$$

It is possible to find a subset without structural singularity and, then, compute the other variables from the bond and differentiated \longrightarrow equations

$$
x^{2}+y^{2}=L^{2}
$$

$$
\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{L}^{2} \quad \Rightarrow 2 \mathrm{xv}_{\mathrm{x}}+2 \mathrm{yv}_{\mathrm{y}}=0 \quad \Rightarrow
$$

Pendulum (another choice of state variables)

$$
\begin{array}{ll}
m \frac{d v_{x}}{d t}=-F \frac{x}{L} & \frac{d x}{d t}=v_{x} \\
m \frac{d v_{y}}{d t}=-F \frac{y}{L}-m g & \frac{d y}{d t}=v_{y}
\end{array}
$$

If we select instead $\mathrm{y}, \mathrm{v}_{\mathrm{y}}$, as state variables, it is possible to have divisions by zero...

$$
x^{2}+y^{2}=L^{2}
$$

$$
x^{2}+y^{2}=L^{2} \Rightarrow 2 x_{x}+2 y_{y}=0 \Rightarrow 2 x \frac{d v_{x}}{d t}+2 v_{x}^{2}+2 y \frac{d v_{y}}{d t}+2 v^{2}=0
$$

1 Solving first the subset of equations:
$m \frac{d v_{y}}{d t}=-F \frac{y}{L}-m g \quad \frac{d y}{d t}=v_{y} \quad x=\sqrt{L^{2}-y^{2}}$
$\left.v_{x}=-\frac{\mathrm{yv}_{\mathrm{y}}}{\mathrm{x}} \frac{\mathrm{dv} \mathrm{v}_{\mathrm{x}}}{\mathrm{dt}}=-\frac{-1}{\mathrm{x}}-\mathrm{y} \frac{\mathrm{Fy}}{\mathrm{mL}}-\mathrm{g}+\mathrm{v}_{\mathrm{x}}^{2}+\mathrm{v}_{\mathrm{y}}^{2}\right]$

Index problems. Boundary conditions

\checkmark When selecting the boundary variables, care must be taken to avoid generating undesired index problems.
\checkmark If a state variable is selected as a boundary, a bond is automatically created. But as the Pantelides algorithm requires computing derivatives of the bond equations, it needs a explicit form of the time dependency of the variable, which is not given at the time of partition definition. Because of this, state variables are not allowed as boundary variables.
\checkmark If one wants to impose a certain time evolution to a state variable, it must add the corresponding equation $x=f(t)$ as part of the model, so that its explicit form is known at partition generation time.

High index example

$$
\begin{aligned}
& \mathrm{F}=\mathrm{m} \frac{\mathrm{~d}^{2} \mathrm{x}}{\mathrm{dt}^{2}} \\
& \mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{t} / 10} \sin (\mathrm{t})
\end{aligned}
$$

```
EQUATIONS
F = m * v'
x'= v
x = sin(TIME)
x' = cos(TIME)
v' = -sin(TIME))
```

| $\mathrm{F}=\mathrm{m}{ }^{*} \mathrm{v}^{\prime} \longrightarrow$ | F |
| :--- | :--- |
| $\mathrm{x}^{\prime}=\mathrm{v}$ | v |
| $\mathrm{x}=\sin ($ TIME $) \longrightarrow$ | x |
| $\mathrm{x}^{\prime}=\cos ($ TIME $) \longrightarrow$ | x^{\prime} |
| $\mathrm{v}^{\prime}=-\sin ($ TIME $\left.)\right) \longrightarrow$ | v^{\prime} |

There is a bond on the state variable x
The bond equation is differentiated twice, generating two equations that allow computing x ' and v ' from them, instead of by integration, avoiding the problems associated to the need of consistent initial conditions

Index 2 problem

Ordering of equations BLT Algorithm

\checkmark Once we are sure there is no structural singularities in the model, the BLT (Block Lower Triangularization) algorithm can be used in order to find the right computational order of the system of equations. This algorithm operates with the incidence matrix, interchanging rows and colums until a lower triangular matrix is obtained.
$\left.\begin{array}{|lllllllll|}\hline & V_{1} & V_{2} & V_{3} & V_{4} & V_{5} & V_{6} & V_{7} & V_{8} \\ f_{1} \\ f_{2} \\ f_{3} \\ f_{4} & x & x & x & x & 0 & 0 & 0 & 0 \\ x & x & x & x & 0 & 0 & 0 & 0 & 0 \\ f_{5} & x & x & x & x & 0 & 0 & 0 & 0 \\ f_{6} & x & x & x & x & x & x & 0 & 0 \\ f_{7} & x & x & x & x & x & x & 0 \\ f_{8} & x & x & x & x & x & x & x & 0 \\ f_{8} & x & x & x & x & x & x & x & x\end{array}\right]$

If this lower triangular matrix is found, then the system of equations is an explicit one, and V_{1} can be computed form equation f_{1}, V_{2} from f_{2}, V_{3} from f_{3}, \ldots

Whenever possible, symbolic manipulation can be used to work out explicitely each variable from the corresponding equation

BLT Algorithm, example

Ordering of equations BLT Algorithm

\checkmark If a lower triangular matrix cannot be found, then, there are algebraic loops in the model.
\checkmark In this case, the BLT algorithm will find a block lower triangular matrix, with some square compact blocks A_{ii}
$\left[\begin{array}{ccccccc}\mathbf{A}_{11} & 0 & 0 & 0 . & \cdot & \cdot & 0 \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{0} & \mathbf{0} & & & 0 \\ \mathbf{A}_{31} & \mathbf{A}_{32} & \mathbf{A}_{33} & \mathbf{0} & & & \cdot \\ \mathbf{A}_{41} & \mathbf{A}_{42} & \mathbf{A}_{43} & \mathbf{A}_{44} & \mathbf{0} & & \cdot \\ \cdot & & & & \cdot & \mathbf{0} & \cdot \\ \cdot & & & & & \cdot & 0 \\ \mathbf{A}_{\mathrm{N} 1} & \cdot & \cdot & \cdot & \cdot & \cdot & \mathbf{A}_{\mathrm{NN}}\end{array}\right]$

> Each block of size larger than 1, represents a subsystem of coupled equations that has to be solved jointly forming an algebraic loop.

BLT -Algebraic loops

$$
\begin{aligned}
& \text { V0 }-\sin (\text { time })=0 \\
& \text { V0 }- \text { V1 }-\mathrm{i} * R 1=0 \\
& \text { V1 }-\mathrm{V} 2-\mathrm{i} * R 2=0 \\
& \text { V2 }-\mathrm{V} 3-\mathrm{i} * R 3=0 \\
& \text { V3' }-\mathrm{i} / \mathrm{C}=0
\end{aligned}
$$

| $\mathrm{V} 0-\sin ($ time $)=0$ | i | V0 V1 | | | V3' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | x | 0 | 0 | 0 |
| V0-V1-i*R1 = 0 | x | x | x | 0 | 0 |
| V1-V2-i*R2 $=0$ | X | 0 | X | x | 0 |
| V2-V3-i*R3 = 0 | x | 0 | 0 | x | x |
| V3' - i/ C = 0 | x | 0 | 0 | 0 | X |

V0 V1 V2

| x | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| x | x | 0 | x | 0 |
| 0 | x | x | x | 0 |
| 0 | 0 | x | x | 0 |
| 0 | 0 | 0 | x | x |

ORDERED EQUATIONS
$\mathrm{V} 0=\sin ($ time $)$
$\left[\begin{array}{rrr}-1 & 0 & -\mathrm{R} 1 \\ 1 & -1 & -\mathrm{R} 2 \\ 0 & 1 & -\mathrm{R} 3\end{array}\right]\left[\begin{array}{c}\mathrm{V} 1 \\ \mathrm{~V} 2 \\ \mathrm{i}\end{array}\right]=\left[\begin{array}{r}-\mathrm{V} 0 \\ 0 \\ \mathrm{~V} 3\end{array}\right]$
V3' = i / C

BLT example

$$
\begin{array}{lllll}
\mathrm{V}_{1}^{\prime} & \mathrm{i}_{2} & \mathrm{~V}_{2}^{\prime} & \mathrm{i}_{1} & \mathrm{~V}_{0}
\end{array}
$$

| $\mathrm{C}_{1} \mathrm{~V}_{1}^{\prime}=\mathrm{i}_{1}$ | \mathbf{x} | | | \mathbf{x} | | $\mathrm{V}_{0}=\mathrm{V}_{2}$ | \mathbf{x} | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{2} \mathrm{~V}_{2}^{\prime}=\mathrm{i}_{2}$ | | X | X | | | $\mathrm{C}_{1} \mathrm{~V}_{1}^{\prime}=\mathrm{i}_{1}$ | | X | X | | |
| $V_{1}^{\prime}=V_{2}^{\prime}$ | X | | X | | | $\mathrm{I}_{0}=\mathrm{i}_{1}+\mathrm{i}_{2}$ | | X | | X | |
| $\mathrm{I}_{0}=\mathrm{i}_{1}+\mathrm{i}_{2}$ | | X | | X | | $\mathrm{V}_{1}^{\prime}=\mathrm{V}_{2}^{\prime}$ | | | | X | X |
| $\mathrm{V}_{0}=\mathrm{V}_{2}$ | | | | | X | $\mathrm{C}_{2} \mathrm{~V}_{2}^{\prime}=\mathrm{i}_{2}$ | | | | X | X |

known:
$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{I}_{0}$

Solved as a set of
algebraic equations

Algebraic loops

\checkmark The BLT algorithm finds an ordered set of equations including possible algebraic loops (subsystems of coupled equations)
\checkmark In order to solve the algebraic loops:

- If all equations of the block are linear, it is possible to work out explicitly the variables involved using a symbolic manipulator, or solve the loop with an efficient linear solver.
- If the algebraic loop is non-linear, then the solution may require a non-linear solver, based on Newton-Raphson , besides the selection of the tearing variables.

BLT example

As system is linear,

$$
\begin{array}{lllll}
\mathrm{V}_{0} & \mathrm{i}_{1} & \mathrm{~V}_{1}{ }^{‘} & \mathrm{i}_{2} & \mathrm{~V}_{2}^{\prime}
\end{array}
$$

known:
$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{I}_{0}$

Solved as a set of
algebraic equations

Loop Tearing

\checkmark Direct solution of an algebraic loop using Newton-Raphson method leads to an algorithm with a size of the Jacobian as large as the number of variables involved in the loop.
\checkmark The use of Equation Tearing techniques allows sustantial reductions of the size of the Jacobian

Some (tearing) variables are selected, so that, if given an initial value, it is possible to compute explicitly the remaining variables of the loop. As the initial value may be wrong, there will be as many equations of the loop as tearing variables that will not compute equal to zero (residual equations). The NewtonRaphson algorithm will iterate modifying the tearing variables until the residual equations are satisfied, but with a reduced Jacobian size.

$$
\begin{aligned}
& \mathrm{F}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0 \\
& \mathrm{~F}_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=0 \\
& \mathrm{~F}_{3}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=0
\end{aligned}
$$

x_{2} selected as tearing variable
$\mathrm{x}_{1}=\mathrm{f}_{1}\left(\mathrm{x}_{2}\right)$
$x_{3}=f_{2}\left(x_{1}, x_{2}\right)$
$\mathrm{F}_{3}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=$ residual

Loop Tearing

| $\text { vo }-\sin (\text { time })=0$ | V0 | | V1 | | V3' |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | x | 0 | 0 | 0 |
| V0-V1-i*R1 = 0 | x | x | x | 0 | 0 |
| V1-V2-i*R2 $=0$ | X | 0 | x | x | 0 |
| V2-V3-i*R3 = 0 | x | 0 | 0 | x | X |
| V3' - $\mathrm{i} / \mathrm{C}=0$ | X | 0 | 0 | 0 | x |

V0 V1 V2

| x | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| x | x | 0 | x | 0 |
| 0 | x | x | x | 0 |
| 0 | 0 | x | x | 0 |
| 0 | 0 | 0 | x | x |

Loop Tearing

\checkmark Loop Tearing methods have some weakness:
\checkmark Tearing algorithms are based on heuristic rules
\checkmark There is no algorithm that provides the best choice among the different possible sets of tearing variables.
\checkmark As a consecuence, the user can select a better set of tearing variables if it is not satisfied with the selection made by the simulation environment

DAEs and algebraic loops

DAE solvers

Overall steps

Model editor and error cheking (Compile)
 \downarrow

Selection of boundary variables and partition generation

Specify experiment \downarrow
C++ Class
\downarrow
Compiler + internal Libraries+ Calls to external software \downarrow
Run-time Executable code

