
Simulation languages

Prof. Cesar de Prada
Dpt. Systems Engineering and Automatic Control

EII, University of Valladolid, Spain
prada@autom.uva.es

Outline

Process Simulation
Motivation
Types of languages

– Block oriented
– Expression oriented
– Equation oriented (Modelling languages)
– Physics based

How model equations are treated in Modelling
languages (EcosimPro)

Digital Simulation

Methods and tools oriented to “imitate” or
predict the responses of a systems against
certain changes or “stimulus” using a
computer.

[image: image1.png]

Uses of Simulation

 Study of a process, what if…? analysis
 Design (process, control,…)
 Testing a control system before actual

implementation in the plant
 Personnel training
 Operation optimization
 Essays in a virtual plant …..

Advantages of the simulation

 Perform changes that, if implemented in the process, will be
o Very costly,
o Too slow / fast
o dangerous, etc.

 Reproduces the experiment as many time as desired under the
same conditions

 Saves time
 Provides safety
 Allows sensitivity studies
 Provides a model that can be used for many purposes
 Allows experimenting with systems that are not built yet

Models

 Simulation is based on mathematical models of the
processes.

 Mathematical models are set of equations relating
the variables of a process and being able to provide
an adequate representation of its behaviour.

 They are always approximations of the real world
 Adequacy of a model depends on their intended use
 There are a wide variety of models according to the

processes they represent and their aims.

Adequate representation

Proceso

u

time

y

time

Model

ym

time
fidelity to the physical asset and facility of use
in the intended application

State space models

)t),t(u,x(g)t(y

)t),t(u),t(x(f
dt

)t(xd

=

=

Manipulated
variables and
disturbances

Model
responses

u y
x

x States

Stages of a simulation project

 Study the process
 Set the simulation aims

– Specify the relevant variables
 Develop the model according to the simulation

aims.
 Code the model in a simulation language
 Set the independent variables and choose the

numerical solvers
 Exploit the results of the simulation

Concepts

Process -> Model
V - I R = 0 ó I = V/R ó V = IR...

Assignment of computational causality
V = I * R

Experiment
R = 10, I = 2

Numerical solution
V = 2*10 = 20

Simulation Languages

Computer program providing tools for:
Describing the model and assigning

computational causality
Defining the experiments to be performed
Solving numerically the set of equations
Visualizing the results and communicating

with the external world

Advantages

 Provide support in all phases of model development
and exploitation

 Allows concentrating in the problem and the results,
not spending time and efforts in programming

 Gives reliability to the numerical results
 Allows saving time
 Allows the non-expert in computing or numerical

methods to solve complex models

First principles models

 Based on knowledge of the process and nature laws
(Physics, chemistry,…)

 Sometimes are difficult to formulate from the scratch,
requiring trained people, large development times,
costs,..

 They need to be tested and validated

 This may limit their use in many fields (Design,
decision making, training,….

 But,….which is the cost of non-using them?

Solution: Libraries of models

 Models are built linking the tested modules or components of
a model library

 Each component of the library contains the mathematical
model of a process and can be configured by parameterization
to fit the user needs

 Each component can be linked to others by an interface or
port in order to built more complex models

Va Vb

Ia Ib Va Vb

Ia Ib

Va Vb

Ia Ib

R1

C1

R2

Physical properties data bases and
good user interfaces are also
required

Model Libraries

 Sets of components representing different processes, devices, etc.
 Each one contains its mathematical model and connections to the external

world
 Components can be parameterized to adapt them to the user requirements

mc_out

Tacha18

j_in1
j_in2

j_in3
v_in

va_out

c_out

mc_out

Tacha18

j_in1
j_in2

j_in3
v_in

va_out

c_out

mc_out

Tacha18

j_in1
j_in2

j_in3
v_in

va_out

c_out

mc_out

Tacha18

j_in1
j_in2

j_in3
v_in

va_out

c_out

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

f_in1 f_in2 f_in3 f_in4 f_in5 f_in6 f_in7

f_out

niv

Deposito1

f_in1 f_in2 f_in3 f_in4 f_in5 f_in6 f_in7

f_out

niv

Deposito1

mc_in1 mc_in2

mc_out

Malaxador6 mc_in1 mc_in2

mc_out

Malaxador6

After
parameterization,
simulation code is
generated

Select and
connect
components
as in the real
world

Model Libraries

Model Libraries

 Modular modelling:
– Facilitates the re-use of models in different applications
– Facilitates the use of simulation to those non-experts in

simulation, but knowing the system to be simulated
 Modularity: Independent description of every module of

the library
 Abstraction: Use the modules without knowing its internal

details (model equations, etc.)
 Hierarchy: New modules can be built by linking the

existing ones

Types of simulation languages according
to the way they support modularity

• Block oriented languages
• Expression oriented languages CSSL’67
• Equation oriented (Modelling languages)
• Automated modelling (SIMPD)

Block oriented languages

Simulink blocks
Tutsim blocks

s y z

Each block has fix input and output variables and contains equations
or code to compute the value of the output variables as a function of
the value of the input ones

x

Blocks or macros

w = 3x -6y
z = 5w + sin(y)

 Encapsulated code that is not manipulated by the simulation
environment

 Fix computational causality, imposed by the inputs and
outputs of the block

 Connections between blocks by linking input - output
variables

 Block diagrams do not mimic the physical layout but the
mathematical one

x

y
z

Simulink

+

R1 R2

C

Physical system

L

u

Model equations

Implementation of the model is done using predefined
blocks that carry out specific operations and are linked
together to perform the operations of the model equations

L / U
dt
di

C/ i
dt

dU
R2 i - U U

R1 /)U - (U i

L
L

C
C

LL

CC

=

=

×=
=

LC

R2R1
U

iLiC

Simulink

The block diagram is built
graphically from the blocks
of the library

Block oriented languages:
Simulink

L / U
dt
di

C/ i
dt

dU
R2 i - U U

R1 /)U - (U i

L
L

C
C

LL

CC

=

=

×=
=

Simulink

+

R1 R2

C

Physical system

L

u

With block oriented languages, the user describes the
mathematical model, not the physical system

Block diagram

Structure
Block diagram edition

Error analysis

Block computational order

Sequential computation
of the block’s outputs

from its imputs

Results Display

End

CSMP 1130
SADS
DSL/90

….

EASY-5
TUTSIM
Simulink

Integration t= t+h

t = tstop?

Block’s computational order

States or known
values initially

2

8
3

64

75 9

1

1 Starting from the blocks
with known initial values,
check which blocks can be
executed as all their inputs
are known.

2 Write them down in a list
and iterate with the new set
of known blocks until all
blocks are used up.

3 If any new block is added
to the list in a full iteration
over all blocks, an algebraic
loop is detected.

1, 9, 8, 2 ,3, 5, 4, 7, 6, 9, 8Computational order

Integration architecture
Start from initial value of integrators
or outputs of blocks without inputs

Compute the output of every block
according to the ordering previously

determined. Compute the inputs of the
integrators,

Integrate the ODE in order to obtain
the value of the states at time t+h

End
Stop time?

Sum1
Sum

Sine Wave

Scope

eu

Math
Function

5

Gain
f (z) zSolve

f(z) = 0
Algebraic Constraint

Algebraic loops

z = 5 (sin(t) - ez)

Sum
Sine Wave

Scope

eu

Math
Function

5

Gain

z

z

z

z

A special block need to
be added. Iterations
until convergence are
required

Closed loop
without
integrator

Hierarchical blocks

Modularity

Hierarchy

Block oriented languages

 There are easy to use and intuitive
 Modular and hierarchical architectures
 Model description does not match neither the physical

process not the equations.
 There are difficult to build and debug in case of models

with a large number of blocks
 Fix computational causality
 Slow: interpreters
 Algebraic loops must be explicitly solved with additional

blocks
 Limited separation model-experiment

Expression oriented languages

Standard CSSL’67 (Simulation 1967 Vol.9, pp.281-
303)

Direct declaration of the model equations
Model description is given a temporal structure
Separation model-experiment: command language
Code generators, compiled simulation code: Speed
Open to the outside world: Call...
Reuse of code: Macros

CSSL’67 Model editor

Errors / Equation ordering

Fortran code

Compiler+ Libraries

Results

Executable codeCommand language

Text
editor

Builder
Code translator

CSSL’67
Program

Initial

End

Dynamic

Derivative

End

Discrete

End

End

Terminal

End

End

Initial conditions. Code
executed once at t= 0

Continuous
equations

Discrete
equations

Final computations.
Code executed once
at tstop

Description
model structure

Fix
computational
causality

Simulation code
similar to the
mathematical
model

Computations

Program

Initial

End

Dynamic

Derivative

End

Discrete

End

End

Terminal

End

End

Initialization of
variables,
including states

Expressions
evaluated at
certain times
(Synchronous or
asynchronous
modes) or when
a event takes
place.

Expressions
evaluated and
integrated every
integration
interval

Global variables

Transfers to initial
region are possible
to create loops.

Language

Equations similar to Fortran: exp, sin , IF THEN ELSE,...

Primitives: BOUND, REALP, DELAY,….

Function generators: SIN, PULSE,...

Tables 2D & 3D

Implicit equations: IMPLC

Integrators: INTEG, several methods: Stiff, DASSL,...

Event and discontinuities treatment: SCHEDULE,
INTERVAL,..

External calls: Call...

Equation ordering

Automatic ordering of the
equations following an
algorithm similar to the one
used with blocks

CONSTANT R = 4.

S = 3.14 * R * R

F = S + exp(R)

V = INTEG(F, 0.1)

CONSTANT R = 4.

V = INTEG(F, 0.1)

F = S + exp(R)

S = 3.14 * R * R

Procedural
regions with fix
sequential order

Fix computational causality

CSSL’67 ACSL

program prueba
initial
 constant x0=0.1, tmax=3.
 cinterval cint=0.35
 algorithm ialg=3
end
derivative
 constant tau=2.
 z = 5* x – 3*y
 x = integ(tau*y + sin(x) , x0)
 y = bound(-1.,1.,x)
 termt(t.gt.tmax)
end
end

y3x5z

)x(sin)x(yτ
td
xd

−=

+=

x

y

LimAlto

LimAltoLim Bajo

program prueba

initial

 constant x0=0.1, tmax=3.

 cinterval cint=0.35

 algorithm ialg=3

end

derivative

 constant tau=2.

 z = 5* x – 3*y

 x = integ(tau*y + sin(x) , x0)

 y = bound(-1.,1.,x)

 termt(t.gt.tmax)

end

end

ACSL Lenguaje de comandos:
start, set, plot,
analyse,…

Ficheros de
Procedimientos

Modularity

A modular approach provides support to the
description of a complex system using pre-
defined sub-systems

Helps library maintenance
Helps team working
Helps improving the readability and use of the

simulation code

Macros

Macros encapsulate simulation code to facilitate its
repetitive use in different places of the model description

There are different from subroutines: The code of a macro
is expanded and analysed with the other equations before
compilation
………..

Valve(u,1)

………….

Valve(aper,6)

MACRO Valve (a,n)
dp&n=(pe&n - ps&n)/den
q&n = a*sqrt(dp&n)

MACRO END

Macros

………..

Valve(u,1)
………….
Valve(aper,6)

MACRO Valve (a,n)
dp&n=(pe&n - ps&n)/den
q&n = a*sqrt(dp&n)

MACRO END

dp1=(pe1 - ps1)den
q1= u*sqrt(dp1)
………...
dp6=(pe6 - ps6)/den
q6= aper*sqrt(dp6)

Fix computational causality

It is difficult to operate with
parameters in long chain calls

Global variables

Modelling Languages

• Direct declaration of the model equations
• Model description is given a temporal structure
• Separation model-experiment
• Object oriented
• Code generators, compiled simulation code
• True modular modelling: They do not have fix

computational causality

Example: DC Motor

ω

LR

V

Independent
excitation

ω++=

−ω−=
ω

ek
td
IdLRIV

TfkI
td

dJ

I

T external torque

keω e.m.f.

T

If L ≅ 0,
ω+=

−ω−=
ω

ekRIV

TfkI
td

dJ

Structure of a model
COMPONENT motorDC

DATA
REAL J = 2 "momento de inercia"
REAL K = 3 "constante de par"
REAL f = 0.01 "friccion"
REAL R = 0.1 "resistencia"
REAL Ke = 0.5

DECLS
REAL T “par”
REAL w “velocidad”

INIT
w = 30 -- initial condition

DISCRETE
WHEN (w > 1500) THEN

T = 20
END WHEN

CONTINUOUS
J*w'= K*i - f*w – T
v = R*i + Ke*w

END COMPONENT

Description of the model
is similar to its
mathematical formulation

Executed only once at time 0

Executed only when a logical
condition is true

Executed continuously

Separation model- Experiment

EXPERIMENT exp1 ON motorDC.motor2

DECLS

INIT -- set initial values for variables

w = 0

BOUNDS -- set expressions for
boundary variables: v = f(t,...)

v = 10

T = 2

BODY

REPORT_TABLE("reportAll", " * ")

TIME = 0

TSTOP = 5

CINT = 0.1

INTEG()

END EXPERIMENT

Experiment

Component

Model

COMPONENT motorDC

DATA
REAL J = 2 "momento de inercia"
REAL K = 3 "constante de par"
REAL f = 0.01 "friccion"
REAL R = 0.1 "resistencia"
REAL Ke = 0.5

DECLS
REAL T “par”
REAL w “velocidad”

INIT
w = 30 -- initial condition

DISCRETE
WHEN (w > 1500) THEN

T = 20
END WHEN

CONTINUOUS
J*w'= K*i - f*w – T
v = R*i + Ke*w

END COMPONENT

Object oriented modelling

Component

Father

Child Child INHERITANCE: A
component can inherit the
behaviour and properties of
other(s)

GENERICNESS: generic
parameters/modes that are given
values only when the component is
going to be used

Public
interface

ENCAPSULATION: A component
hides the complexity of the model as
only a certain part of the model is
made public

Connecting modules by ports

COMPONENT motorDC

PORTS
IN Elec AL
IN Mech_rot eje

DATA
REAL J = 2 "momento de inercia"
REAL K = 3 "constante de par"
REAL f = 0.01 "friccion"
REAL R = 0.1 "resistencia"
REAL Ke = 0.5

DECLS
REAL T “par”
REAL w “velocidad”

CONTINUOUS
J*w'= K*AL.i - f*w – T
AL.v = R*AL.i + Ke*w
T = eje.T
w = eje.omega

END COMPONENT

Component

Electrical and mechanical ports
have been defined…

Model

Body of the
Component

Port

Component 2

PORT Elec "Electrical pin"
EQUAL REAL v "Potential (V)"
SUM REAL i "Current (amp) "

END PORT

Hierarchical models

Modular modelling

Block oriented languages, do not allow true modular
modelling, because they impose the computational causality
at the model description stage

Modelling languages:

 They were developed to facilitate model reuse
 They do not have fix computational causality
 DYMOLA, GPROMS, MODELICA, OMOLA,

ECOSIMPRO, ABACUS, JACOBIAN, ASPEN
DYNAMICS…

Code to be executed depends on the aims
and boundaries of the problem

21 ppkq −=

k
qpp

2

12 −=

Aim: To have a
description of the
model of a component
independent from its
use in a specific case.

p1

p2

q

If p1 and p2 are
given:

If p1 and q are
given:

Computational Causality

Different to the equation ordering

Example: Two different implementations required for the resistor

Current is computed from Voltage is computed from
the equation I = V/R the equation V = IR
 . .

Vo

+

I=V/R
Io

+

V=I*R

Computational
causality assignment:
Which equation
should be used to
compute every
unknown variable?
Modelling languages
perform the
assignment analysing
the whole set of
model equations as a
function of the
known boundaries.

V = I R

Different to the equation ordering

Example: Two different implementations required for the resistor

Current is computed from

Voltage is computed from

the equation I = V/R

the equation V = IR

.

.

Vo

+

I=V/R

Io

+

V=I*R

Modelling Languages

• A model of a system is composed using a high level description,
linking pre-defined modules representing sub-systems.

• Each module contains the mathematical description of a sub-
system

• Each module is linked to others through an interface or port, in
the same way as in the physical world.

• BUT, the mathematical model of the system is generated later on,
manipulating the whole set of equations as a function of the
chosen systems boundaries.

Va Vb

Ia Ib Va Vb

Ia Ib

Va Vb

Ia Ib

R1

C1

R2

Modelling Languages

R2

R3

R1
v1 i3

i1
vc v2

v3

i2

i1 = i2 + i3
v1 - vc = i1 * R1
vc - v2 = i2 * R2
vc - v3 = i3 * R3

Analysis of the whole
set of equations

Model and code
generation

EcosimPro

 First version 1992, Unix, ESA
 First version under Windows: 1999
 Object oriented tool
 Support continuous, discrete and discrete event processes
 Models are built by textual description of from graphical

libraries.
 Provides a software development environment
 Open code, C++, ActiveX, OPC, FMI,…
 Version 5 on , 2013, multiplatform QT
 Proosis

Cesar de Prada ISA-UVA 54

EcosimPro

Cesar de Prada ISA-UVA 55

Graphical environment

Cesar de Prada ISA-UVA 56

Modelling steps

Library of non
causal models

Model built linking
components

Analysis and computational
causality of the whole set of
equations (Partition)

Model with assigned
computational causality

Experiment definition and
Generation of C++ code

Simulation Code
execution

Modelling Languages

R2

R3

R1
v1 i3

i1
vc v2

v3

i2

i1 = i2 + i3
v1 - vc = i1 * R1
vc - v2 = i2 * R2
vc - v3 = i3 * R3

Analysis

Model analysis and assignment of
computational causality
(Partition generation)

1. Specify the boundary conditions
2. Is it feasible to solve the problem with the specified

boundaries? (Detection of structural singularities, Maximum
Transversal Algorithm)
1. Inadequate Boundaries
2. High index models

3. Specify the equation that will be used to compute every
variable and stablish the order in which the equations will be
used (BLT Algorithm)
1. Whenever possible, work out every variable symbolically
2. Identify the possible algebraic loops (Select tearing variables)

4. The partition is finished and ordered model equations are
generated ready to be solved.

MaximumTransversal Algorithm

R2

R3

R1
v1 i3

i1
vc v2

v3

i2

7 unkowns:

v1, v2, v3, vc, i1, i2, i3

3 data: R1, R2, R3

4 equations
i1 = i2 + i3
v1 - vc = i1 * R1
vc - v2 = i2 * R2
vc - v3 = i3 * R3

The number of required boundary conditions is determined as the difference
between the number of variables and the number of equations. Once a set of
boundary variables is proposed by the user, its validity is cheked with the
Maximum Transversal algorithm

3 boundary conditions

Ecuaciones
Variables
f1(x1)= 0 x1
f2(x1,x2,x3)= 0 x2
f3(x1)= 0 ??

Ecuaciones
Variables
f1(x1)= 0 x1
f2(x1,x2,x3)= 0 x2
f3(x1,x3)= 0 x3

Mathematically correct system System with a structural singularity

Is the system with the selected boundary variables structurally correct?
A necessary condition for a model to be mathematically correct is the
existence of a one to one correspondence between equations and variables.

MaximumTransversal Algorithm

Equations and Boundary Conditions Variables
Eq 1: i1 = i2 + i3 i1
Eq 2: v1 - vc = R1 * i1 i2
Eq 3: vc - v2 = R2 * i2 i3
Eq 4: vc - v3 = R3 * i3 v1
BC 1: v1 v2
BC 2: v2 v3
BC 3: v3 vc

MaximumTransversal Algorithm

Example: Valid boundary variables: v1,v2,v3

Example: Valid Boundary variables: vc,v2,v3

I1 = 12 + i3 i1

V1 – vc = R1*i1 i2

V2 – vc = R2*i2 i3

V3 – vc = R3*i3 vc

Vc v1

V2 v2

V3 v3

Maximum Transversal Algorithm

But the simulation corresponds to a different problem

Equations and Boundary Conditions Variables
Eq 1: i1 = i2 + i3 i1
Eq 2: v1 - vc = R1 * i1 i2
Eq 3: vc - v2 = R2 * i2 i3
Eq 4: vc - v3 = R3 * i3 v1
BC 1: v1 v2
BC 2: v2 v3
BC 3: v3 vc

Example: Wrong boundary variables : i1,i2,i3

Equations and Boundary Conditions Variables

Eq 1: i1 = i2 + i3 ???? i1
Eq 2: v1 - vc = R1 * i1 i2
Eq 3: vc - v2 = R2 * i2 i3
Eq 4: vc - v3 = R3 * i3 v1
BC 1: i1 v2
BC 2: i2 v3
BC 3: i3 vc

MaximumTransversal Algorithm

MaximumTransversal Algorithm

×
×

×
×××

×××
×××

×××

=−
=−
=−
+=

v3
v2
v1

Ri2vvc
Ri2v2vc

R1i1vcv1
i3i2i1

v3v2v1i3i2vci1

33
2

×
×

×
××

×××
×××

×××

=−
=−
=−
+=

x

v3
v2
v1

3R3i3vvc
2Ri2v2vc

R1i1vcv1
i3i2i1

v3v2v1vci3i2i1

In order to analyse the goodness of the selected boundary variables, a matrix
is formed with two entries: the rows represent the equations and boundary
variables, while the columns contain the model variables. This incidence
matrix has a one in a element if the variable considered appears in the
corresponding equation and has a zero otherwise.

The Maximum transversal algorithm interchanges the matrix columns until all
elements in the diagonal are ones. Then the problem is structurally solvable.

MaximumTransversal Algorithm

 Which model variables are included in the analysis performed
by the Maximum Transversal algorithm?

 State variables x (which appear under the derivative sign) are
considered known variables in the analysis because an initial
value has to be assigned to them and, consequently, they are
not included in the matrix of the Maximum Transversal.

 Derivatives of the state variables x’ are considered as
unknown variables that must be evaluated for the integration
of the system and, consequently, are in cluded in the matrix.

x’ = dx / dt = f(x, t)

MaximumTransversal Algorithm

 The boundary conditions are selected freely by the user, but it
is possible to suggest him a coherent set or check the user
selection.

 When suggesting a set of boundary variables, a first choice
refers to the variables assigned to unconnected ports, after
checking that they satisfy the maximum transversal algorithm.

 If this choice fails, another set is selected iterating on the
remaining variables.

Model analysis

 Have the model equations the adequate mathematical format to
be solved?

 The Maximum Transversal algorithm fails when a high index
problem is present.

0)u,x,x(g

)t,u,x,x(f
td

xd

)t,u,x,x(f
td

xd

21

212
2

211
1

=

=

=X1
’ X2

’

F1 x
F2 x
g ? ?

u boundary variable

DAEs / ODEs Models

 A set of Ordinary Differential Equations, where the derivatives
of the state variables appear explicitly, as functions of the
states and of known functions of time is denoted as ODE.

 When the derivatives do not appear as explicit functions, the
system of equations is called a set of DAEs, Differential
Algebraic Equations. This includes implicit differential
equations and coupled sets of differential and algebraic
equations. In general:

)u,x(f
td
xd =

0)u,x,x(F =

Index Problems

 Sometimes a set of DAEs can be converted to a set of ODEs
managing the equations, nevertheless, if the matrix ∂F/∂ẋ is
singular, the transformation is not possible unless some of the
equations are differentiated with respect to time.

 The index of a DAE is the number of times needed to
differentiate the DAEs to get a system of ODEs.

 A differential index of 1 is called low index, while it is called
High index if it is 2 or larger.

 In systems with index 1 or larger, the maximum transversal
algorithm fails in finding a feasible set of boundary conditions.

0)u,x,x(F =)u,x(f
td
xd =

Index problems

 Index problems appear many times associated to the
formulation of a DAE model where the state variables cannot
be computed freely, but are constrained by some bond
equations.

 Some integration methods may not consider these bonds and,
consequently, they fail if applied to a high index problem.

 In particular, we cannot assign initial values to the states freely, as they
must satisfy the bond equations.

0)u,x,x(g

)t,u,x,x(f
td

xd

)t,u,x,x(f
td

xd

21

212
2

211
1

=

=

=

In the bond
equations, all
variables are
known

21

21
1

1 ...TT...
dt

dJ

ω=ω

+++=ω

Index problems: Examples

...TT...
dt

dJ 21
2

2 +++=ω

High index problems can be generated when linking together
two components of a library because of the bond equations
added by the ports:

ω1 ω2

Rigid
shaft

Equation generated by the mechanical port

i
dt
dVC =

2
2

2

1
1

1

i
dt

dVC

i
dt

dVC

=

=

21 VV =

Index problems: Examples

Index problems can be generated when linking together two
components of a library because of the bond equations added by
the ports:

V i

C

V1 V2

C1 C2

i1 i2

Index problems: Examples

V1 V2

C1 C2

i1 i2 V0I0

20

210

21

222

111

VV
iiI

VV
i'VC
i'VC

=
+=

=
=
=

V1, V2 are state variables as they
appear under the derivative sign.
I0 is chosen as boundary variable

Unknown variables: V1’, V2’, i1, i2, V0
Known variables: V1, V2, I0

Current
source

Only 4 equations contain
the 5 unknown variables.
This structure implies
that there is no solution
to the assignment
problem with the
maximum transversal
algorithm

??

5 variables and 5 equations

but the bond equation V1 = V2
creates a structural singularity

High Index problems: Examples

 Sometimes high index problems
appear due to the formulation of
the problem, that does not follows
the physical causality but
corresponds to other problems
like, e.g. control

 Which is the force that must be
applied to a particle in order to
move it according to a certain
pre-specified trajectory?

)tsin(e)t(x
dt

xdmF

10/

2

2

t−=

=

There is a boundary condition
specified on a state variable

High Index problems

 The Maximum Transversal algorithm fails when a high index problem is

present. Example:

MAXIMUM TRANSVERSAL
F = m * v’ v’

x’ = v x’

x = exp(-TIME/10) * sin(TIME)?? F

3 Equations
F = m * v’
x’= v
x = exp(-TIME/10) * sin(TIME)

Known variables
v & x state variables
m data
3 Unknown variables

F, v’, x’

Three variables
that appear
only in two
equations. The
last one is
useless for
estimating F

Pantelides algorithm

 The Pantelides algorithm is used to transform high index problems into an
equivalent lower index one.

 The algorithm adds new equations to the model obtained by differentiation
of the ones that create the structural singularity (the bond equations),
facilitating the application of the maximum transversal algorithm.

 As new equations are added, one should either incorporate more variables,
or substitute the bond equations by its differentiate form to balance the
number of equations and variables.

 The procedure is repeated until no structural singular set is found

0)u,x,x(f
td

xd
211

1 =−

0)u,x,x(g

0)u,x,x(f
td

xd

21

212
2

=

=−

0
dt

)u,x,x(gd 21 =

Pantelides algorithm

 One option to balance equations and variables is to substitute
the bond equations by its differentiated form

 Another option is not replacing the bond equations, but adding some states
as new variables. As the initial values of the state equations cannot be
chosen arbitrarily, some state variables involved in the bonds are not
computed by integration of the corresponding differential equation, but
from the bond equations. This implies that these state variables can be
considered as unknown and added to the list for the analysis of the
maximum transversal algorithm.

0)u,x,x(f
td

xd
211

1 =−

0)u,x,x(g

0)u,x,x(f
td

xd

21

212
2

=

=−

0
dt

)u,x,x(gd 21 =

Example

V1 V2

C1 C2

i1 i2 V0I0

V1and V2 are state variables
I0 is chosen as boundary variable

Unknown variables: V1’, V2’, i1, i2, V0
Known variables: V1, V2, I0

Current
source

Now there are 5 equations
containing 5 unknown
variables and the
maximum transversal
algorithm can be applied.
But coherent initialization
is required or critical
information can be lost
about the initial values

5 variables and 5 equations

V’ = d \dt

Index one problem, as the
bond equation V1 = V2 has
been differentiated only
once20

210

21

222

111

VV
iiI
'V'V
i'VC
i'VC

=
+=

=
=
=

Example

20

210

'
2

'
1

2
'
22

1
'

11

VV
iiI

VV

iVC

iVC

=
+=

=

=

=

V1’ V2’ i1 i2 V0 V1’ i2 V2‘ i1 V0
x x

x x

x x

x x

x

This implies that the problem is now structurally solvable. A different
problem is finding the right assignment and order of calculus between
variables and equations

x x

x x

x x

x x

x

Example

V1 V2

C1 C2

i1 i2 V0I0

20

210

21

21

222

111

VV
iiI
'V'V

VV
i'VC
i'VC

=
+=

=
=

=
=

V2 is a state variable, but it will be
considered as a variable as it will
not be computed from integration
of V2’, but from V2= V1
I0 is chosen as boundary variable

Unknown variables: V1’, V2’, i1, i2, V0, V2
Known variables: V1, I0

Current
source

Now there are 6
equations containing 6
unknown variables and
the maximum
transversal algorithm
can be applied

6 variables and 6 equations

Index one problem, as the
bond equation V1 = V2 has
been differentiated only
once

Pantelides algorithm

'
2

'
1

20

210

21

2
'
22

1
'

11

VV

VV
iiI

VV
iVC

iVC

=

=
+=

=
=

=

V1’ V2’ i1 i2 V0 V2 V1’ i2 V2 i1 V0 V2’
x x

x x

x

x x

x x

x x

x x

x x

x

x x

x x

x x

This implies that the problem is now structurally solvable. A different
problem is finding the right assignment and order of calculus between
variables and equations

Pendulum (Index 2 problem)

222

y2

2

x2

2

Lyx

v
dt
dymg

L
yF

dt
ydm

v
dt
dx

L
xF

dt
xdm

=+

=−−=

=−=

mg

x

y

F

θ L

The structural singularity is
created by inadequate
modelling: using cylindrical
coordinate, the problem can be
described with a single variable
θ without bonds

There are 4 useful equations and 4
unknowns x’,y’, vx’, vy’ but as we
cannot initialize arbitrarily the four
states, the bond equation is
differentiated twice to find equations
that provide the value of two of them
instead of using integration of the
corresponding differential equations.

Pendulum (Index 2 problem)

222

y
y

x
x

Lyx

v
dt
dymg

L
yF

dt
dv

m

v
dt
dx

L
xF

dt
dvm

=+

=−−=

=−=

0v2
dt

dv
y2v2

dt
dvx2

0yv2xv2Lyx

2
y

y2
x

x

yx
222

=+++⇒

⇒=+⇒=+

x
x v

dt
dx

L
xF

dt
dvm =−=

 ++−−=−=−= 2

y
2
x

yx
y

22 vv
mL
Fxx

y
1

dt
dv

y
xvvxLy

mg

x

y

F

θ L

It is possible to find a
subset without
structural singularity
and, then, compute the
other variables from
the bond and
differentiated
equations

Obtained by
differentiation

Pendulum (another choice of
state variables)

y
y v

dt
dymg

L
yF

dt
dv

m =−−=

0v2
dt

dv
y2v2

dt
dvx20yv2xv2Lyx 2

y
y2

x
x

yx
222 =+++⇒=+⇒=+

 ++−−−=−=−= 2

y
2
x

xy
x

22 vvg
mL
Fyy

x
1

dt
dv

x
yv

vyLx

mg

x

y

F

θ L

222

y
y

x
x

Lyx

v
dt
dymg

L
yF

dt
dv

m

v
dt
dx

L
xF

dt
dvm

=+

=−−=

=−=

If we select
instead y, vy ,
as state
variables, it is
possible to
have divisions
by zero…

1 Solving first the subset of
equations: 2 Then,computing the remaining variables

from:

Index problems. Boundary
conditions

 When selecting the boundary variables, care must be taken to
avoid generating undesired index problems.

 If a state variable is selected as a boundary, a bond is
automatically created. But as the Pantelides algorithm requires
computing derivatives of the bond equations, it needs a
explicit form of the time dependency of the variable, which is
not given at the time of partition definition. Because of this,
state variables are not allowed as boundary variables.

 If one wants to impose a certain time evolution to a state
variable, it must add the corresponding equation x = f(t) as
part of the model, so that its explicit form is known at
partition generation time.

High index example

EQUATIONS
F = m * v’
x’= v
x = sin(TIME)
x’ = cos(TIME)
v’ = -sin(TIME))

There is a bond on the state variable x

The bond equation is differentiated twice,
generating two equations that allow
computing x’ and v’ from them, instead of
by integration, avoiding the problems
associated to the need of consistent initial
conditions

Index 2 problem
F = m * v’ F
x’= v v
x = sin(TIME) x
x’ = cos(TIME) x’
v’ = -sin(TIME)) v’

)tsin(e)t(x
dt

xdmF

10/

2

2

t−=

=

Ordering of equations
BLT Algorithm

 Once we are sure there is no structural singularities in the model, the
BLT (Block Lower Triangularization) algorithm can be used in order
to find the right computational order of the system of equations. This
algorithm operates with the incidence matrix, interchanging rows and
colums until a lower triangular matrix is obtained.

xxxxxxxx
xxxxxxx

xxxxxx
xxxxx

xxxx
xxx

xx
x

f
f
f
f
f
f
f
f

VVVVVVVV

0
00
000
0000
00000
000000
0000000

8

7

6

5

4

3

2

1

87654321 If this lower triangular matrix is
found, then the system of equations
is an explicit one, and V1 can be
computed form equation f1 , V2 from
f2 , V3 from f3 , …

Whenever possible, symbolic
manipulation can be used to work out
explicitely each variable from the
corresponding equation

BLT Algorithm, example
V0 - sin(time) = 0

V0 - V1 - i * R1 = 0

V1 - V2 - i * R2 = 0

V2 - V3 - i * R3 = 0

V3 - L * i’ = 0

ORDERED
EQUATIONS

V0 = sin(time)
V1 = V0 - i * R1
V2 = V1 - i * R2
V3 = V2 - i * R3
i’ = V3 / L

L

RRR

VA
C

G G

V0
V1

V3
V2

i

R1 R3R2

L1

Symblic
manipulationBLT

i' V0 V1 V2 V3 V0 V1 V2 V3 i'
V0 - sin(time)= 0 0 x 0 0 0 x 0 0 0 0
V0 - V1 - i * R1 = 0 0 x x 0 0 x x 0 0 0
V1 - V2 - i * R2 = 0 0 0 x x 0 0 x x 0 0
V2 - V3 - i * R3 = 0 0 0 0 x x 0 0 x x 0
V3 - L * i' x 0 0 0 0 0 0 0 0 x

BLT

X XX

Ordering of equations
BLT Algorithm

 If a lower triangular matrix cannot be found, then, there are
algebraic loops in the model.

 In this case, the BLT algorithm will find a block lower
triangular matrix, with some square compact blocks Aii

NNN1

44434241

333231

2221

11

A.....A

0..

.0..

.0AAAA

.0AAA

000AA

0..0.00A
Each block of size larger
than 1, represents a
subsystem of coupled
equations that has to be
solved jointly forming an
algebraic loop.

BLT –Algebraic loops

V0 - sin(time) =0

V0 - V1 - i * R1 = 0

V1 - V2 - i * R2 = 0

V2 - V3 - i * R3 = 0

V3’ - i / C = 0

ORDERED EQUATIONS

V0 = sin(time)

V3’ = i / C

BLT

RRR

VA
C

G G

V0
V1

V3
V2

i

R1 R3R2

L1C C

i V0 V1 V2 V3' V0 V1 V2 i V3'
V0 - sin(time)= 0 0 x 0 0 0 x 0 0 0 0
V0 - V1 - i * R1 = 0 x x x 0 0 x x 0 x 0
V1 - V2 - i * R2 = 0 x 0 x x 0 0 x x x 0
V2 - V3 - i * R3 = 0 x 0 0 x x 0 0 x x 0
V3' - i / C = 0 x 0 0 0 x 0 0 0 x x

−
=

−
−−
−−

V3
0

V0

i
V2
V1

R310
R211
R101

BLT example

V1’ i2 V2‘ i1 V0

x x

x x

x x

x x

x

V1 V2

C1 C2

i1 i2 V0I0

Current
source

20

210

'
2

'
1

2
'
22

1
'

11

VV
iiI

VV

iVC

iVC

=
+=

=

=

=

V0 i1 V1‘ i2 V2’
x

x x

x x

x x

x x

known:
V1, V2, I0

2
'
22

'
2

'
1

210

1
'

11

20

iVC

VV

iiI
iVC

VV

=

=

+=
=

=

Solved as a
set of
algebraic
equations

Algebraic loops

 The BLT algorithm finds an ordered set of equations
including possible algebraic loops (subsystems of coupled
equations)

 In order to solve the algebraic loops:
– If all equations of the block are linear, it is possible to

work out explicitly the variables involved using a symbolic
manipulator, or solve the loop with an efficient linear
solver.

– If the algebraic loop is non-linear, then the solution may
require a non-linear solver, based on Newton-Raphson ,
besides the selection of the tearing variables.

BLT example

V1 V2

C1 C2

i1 i2 V0I0

Current
source

V0 i1 V1‘ i2 V2’
x

x x

x x

x x

x x

known:
V1, V2, I0

2
'
22

'
2

'
1

210

1
'

11

20

iVC

VV

iiI
iVC

VV

=

=

+=
=

=

Solved as a
set of
algebraic
equations

'
111

'
222

'
2

'
1

'
20

'
22

'
21

210

'
2

'
1

20

VCi

VCi

VV

VIVCVC
iiI

VV

VV

=

=

=

⇒=+

+=
=

=

As system is linear,
using symbolic
manipulations:

Loop Tearing

 Direct solution of an algebraic loop using Newton-Raphson
method leads to an algorithm with a size of the Jacobian as
large as the number of variables involved in the loop.

 The use of Equation Tearing techniques allows sustantial
reductions of the size of the Jacobian

Some (tearing) variables are selected, so that,
if given an initial value, it is possible to
compute explicitly the remaining variables of
the loop. As the initial value may be wrong,
there will be as many equations of the loop as
tearing variables that will not compute equal
to zero (residual equations). The Newton-
Raphson algorithm will iterate modifying the
tearing variables until the residual equations
are satisfied, but with a reduced Jacobian size.

F1(x1, x2) = 0
F2(x1, x2, x3) = 0
F3(x1, x2, x3) = 0

x2 selected as tearing
variable

x1 = f1(x2)
x3 = f2(x1, x2)
F3(x1, x2, x3) = residual

Loop Tearing
V0 - sin(time) =0

V0 - V1 - i**2 * R1 = 0

V1 - V2 - i**2 * R2 = 0

V2 - V3 - i**2 * R3 = 0

V3’ - i / C = 0

ORDERED EQUATIONS

V0 = sin(time)

i tearing variable
V1 = V0 - i**2 * R1

V2 = V1 - i**2 * R2

F(i) = V2 - V3 - i**2 * R3 = 0

V3’ = i / C

BLT

RRR

VA
C

G G

V0
V1

V3
V2

i

R1 R3R2

L1C C

i V0 V1 V2 V3' V0 V1 V2 i V3'
V0 - sin(time)= 0 0 x 0 0 0 x 0 0 0 0
V0 - V1 - i * R1 = 0 x x x 0 0 x x 0 x 0
V1 - V2 - i * R2 = 0 x 0 x x 0 0 x x x 0
V2 - V3 - i * R3 = 0 x 0 0 x x 0 0 x x 0
V3' - i / C = 0 x 0 0 0 x 0 0 0 x x

Residue equation

Loop Tearing

Loop Tearing methods have some weakness:
 Tearing algorithms are based on heuristic rules
 There is no algorithm that provides the best choice among the

different possible sets of tearing variables.
 As a consecuence, the user can select a better set of tearing

variables if it is not satisfied with the selection made by the
simulation environment

DAEs and algebraic loops

Solve
algebraic loops

Initialization

Compute
model residuals

Solve
integrators

Residuals from
algebraic equ.

Initialization

Other residuals

Solve DASSL

Only one
single
Newton
iteration
is needed

DAE solvers
do not require
solving
algebraic loops
independently

Model editor and error cheking (Compile)

Selection of boundary variables and partition generation

C++ Class

Compiler + internal Libraries+ Calls to external software

Run-time Executable code

Specify experiment

Overall steps

	Número de diapositiva 1
	Outline
	Digital Simulation
	Uses of Simulation
	Advantages of the simulation
	Models
	Adequate representation
	Número de diapositiva 8
	Stages of a simulation project
	Concepts
	Simulation Languages
	Advantages
	First principles models
	Número de diapositiva 14
	Número de diapositiva 15
	Número de diapositiva 16
	Model Libraries
	Types of simulation languages according to the way they support modularity
	Block oriented languages
	Blocks or macros
	Simulink
	Simulink
	Block oriented languages: Simulink
	Simulink
	 Structure
	Block’s computational order
	Integration architecture
	Algebraic loops
	Hierarchical blocks
	Block oriented languages
	Expression oriented languages
	CSSL’67
	CSSL’67
	Computations
	Language
	Equation ordering
	CSSL’67 ACSL
	ACSL
	Modularity
	Macros
	Macros
	Modelling Languages
	Número de diapositiva 43
	Structure of a model
	Separation model- Experiment
	Número de diapositiva 46
	Número de diapositiva 47
	Número de diapositiva 48
	Modular modelling
	Code to be executed depends on the aims and boundaries of the problem
	Computational Causality
	Número de diapositiva 52
	Modelling Languages
	EcosimPro
	EcosimPro
	Graphical environment
	Modelling steps
	Modelling Languages
	Model analysis and assignment of computational causality �(Partition generation)
	MaximumTransversal Algorithm
	Número de diapositiva 61
	Número de diapositiva 62
	Número de diapositiva 63
	Número de diapositiva 64
	MaximumTransversal Algorithm
	MaximumTransversal Algorithm
	MaximumTransversal Algorithm
	Model analysis
	DAEs / ODEs Models
	Index Problems
	Index problems
	Index problems: Examples
	Index problems: Examples
	Index problems: Examples
	High Index problems: Examples
	High Index problems
	Pantelides algorithm
	Pantelides algorithm
	Example
	Example
	Número de diapositiva 81
	Número de diapositiva 82
	Número de diapositiva 83
	Pendulum (Index 2 problem)
	Pendulum (another choice of state variables)
	Index problems. Boundary conditions
	High index example
	Ordering of equations BLT Algorithm
	BLT Algorithm, example
	Ordering of equations BLT Algorithm
	BLT –Algebraic loops
	BLT example
	Algebraic loops
	Número de diapositiva 94
	Loop Tearing
	Loop Tearing
	Loop Tearing
	Número de diapositiva 98
	Overall steps

