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– Block oriented
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– Equation oriented (Modelling languages)
– Physics based

How model equations are treated in Modelling 
languages (EcosimPro)



Digital Simulation

Methods and tools oriented to “imitate” or 
predict the responses of a systems against 
certain changes or “stimulus” using a 
computer.  
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Uses of Simulation

 Study of a process, what if…? analysis
 Design (process, control,…)
 Testing a control system before actual 

implementation in the plant
 Personnel training
 Operation optimization
 Essays in a virtual plant …..



Advantages of the simulation

 Perform changes that, if implemented in the process, will be 
o Very costly, 
o Too slow / fast 
o dangerous, etc.

 Reproduces the experiment as many time as desired under the 
same conditions

 Saves time
 Provides safety
 Allows sensitivity studies
 Provides a model that can be used for many purposes
 Allows experimenting with systems that are not built yet



Models

 Simulation is based on mathematical models of the 
processes.

 Mathematical models are set of equations relating 
the variables of a process and being able to provide 
an adequate representation of its behaviour. 

 They are always approximations of the real world
 Adequacy of a model depends on their intended use
 There are a wide variety of models according to the 

processes they represent and their aims.



Adequate representation

Proceso

u

time

y

time

Model

ym

time
fidelity to the physical asset  and facility of use 
in the intended application



State space models
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Stages of a simulation project

 Study the process
 Set the simulation aims

– Specify the relevant variables
 Develop the model according to the simulation 

aims.
 Code the model in a simulation language
 Set the independent variables and choose the 

numerical solvers
 Exploit the results of the simulation



Concepts

Process  ->  Model
V - I R = 0  ó  I = V/R  ó V = IR...

Assignment of computational causality
V = I * R

Experiment
R = 10, I = 2

Numerical solution
V = 2*10 = 20



Simulation Languages

Computer program providing tools for:
Describing the model and assigning 

computational causality
Defining the experiments to be performed
Solving numerically the set of equations
Visualizing the results and communicating 

with the external world



Advantages

 Provide support in all phases of model development 
and exploitation

 Allows concentrating in the problem and the results, 
not spending time and efforts in programming

 Gives reliability to the numerical results
 Allows saving time
 Allows the non-expert in computing or numerical 

methods to solve complex models



First principles models

 Based on knowledge of the process and nature laws 
(Physics, chemistry,…)

 Sometimes are difficult to formulate from the scratch, 
requiring trained people, large development times, 
costs,..

 They need to be tested and validated

 This may limit their use in many fields (Design, 
decision making, training,…. 

 But,….which is the cost of non-using them?



Solution: Libraries of models

 Models are built linking the tested modules or components of 
a model library

 Each component of the library contains the mathematical 
model of a process and can be configured by parameterization 
to fit the user needs

 Each component can be linked to others by an interface or 
port in order to built more complex models
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Physical properties data bases and 
good user interfaces are also 
required



Model Libraries

 Sets of components representing different processes, devices, etc. 
 Each one contains its mathematical model and connections to the external 

world
 Components can be parameterized to adapt them to the user requirements



mc_out

Tacha18

j_in1
j_in2

j_in3
v_in

va_out

c_out

mc_out

Tacha18

j_in1
j_in2

j_in3
v_in

va_out

c_out

mc_out

Tacha18

j_in1
j_in2

j_in3
v_in

va_out

c_out

mc_out

Tacha18

j_in1
j_in2

j_in3
v_in

va_out

c_out

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

mc_in

mp_out

mr_out

cristal_out

Turbinadiscontinua1

f_in1 f_in2 f_in3 f_in4 f_in5 f_in6 f_in7

f_out

niv

Deposito1

f_in1 f_in2 f_in3 f_in4 f_in5 f_in6 f_in7

f_out

niv

Deposito1

mc_in1 mc_in2

mc_out

Malaxador6 mc_in1 mc_in2

mc_out

Malaxador6

After 
parameterization, 
simulation code is 
generated 

Select and 
connect 
components 
as in the real 
world

Model Libraries



Model Libraries

 Modular modelling:
– Facilitates the re-use of models in different applications
– Facilitates the use of simulation to those non-experts in 

simulation, but knowing the system to be simulated
 Modularity: Independent description of every module of 

the library
 Abstraction: Use the modules without knowing its internal 

details (model equations, etc.)
 Hierarchy: New modules can be built by linking the 

existing ones 



Types of simulation languages according 
to the way they support modularity

• Block oriented languages
• Expression oriented languages CSSL’67
• Equation oriented (Modelling languages)
• Automated modelling (SIMPD)



Block oriented languages

Simulink   blocks
Tutsim      blocks

s y z

Each block has fix input and output variables and contains equations 
or code to compute the value of the output variables as a function of 
the value of the input ones

x



Blocks or macros

w = 3x -6y
z = 5w + sin(y)

 Encapsulated code that is not manipulated by the simulation 
environment 

 Fix computational causality, imposed by the inputs and 
outputs of the block

 Connections between blocks by linking input - output 
variables

 Block diagrams do not mimic the physical layout but the 
mathematical one

x

y
z



Simulink

+

R1 R2

C

Physical system

L

u

Model equations

Implementation of the model is done using predefined 
blocks that carry out specific operations and are linked 
together to perform the operations of the model equations
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Simulink

The block diagram is built 
graphically from the blocks 
of the library 



Block oriented languages: 
Simulink

L  / U     
dt
di

C/  i  
dt

dU
R2  i - U  U

R1 / )U - (U  i

L
L

C
C

LL

CC

=

=

×=
=



Simulink
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With block oriented languages, the user describes the 
mathematical model, not the physical system

Block diagram



Structure
Block diagram edition

Error analysis

Block computational order

Sequential computation 
of the block’s outputs 

from its imputs

Results Display

End

CSMP  1130   
SADS  
DSL/90 

….

EASY-5 
TUTSIM 
Simulink

Integration  t= t+h

t = tstop?



Block’s computational order

States or known 
values initially

2

8
3

64

75 9

1

1 Starting from the blocks 
with known initial values, 
check which blocks can be 
executed as all their inputs 
are known.

2 Write them down in a list 
and iterate with the new set 
of known blocks until all 
blocks are used  up.

3 If any new block is added 
to the list in a full iteration 
over all blocks, an algebraic 
loop is detected.

1, 9, 8, 2 ,3, 5, 4, 7, 6, 9, 8Computational order



Integration architecture
Start from initial value of integrators 
or outputs of blocks without inputs

Compute the output of every block
according to the ordering previously 

determined. Compute the inputs of the 
integrators,  

Integrate the ODE in order to obtain
the value of the states at time t+h

End
Stop time?
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Hierarchical blocks

Modularity

Hierarchy



Block oriented languages

 There are easy to use and intuitive
 Modular and hierarchical architectures
 Model description does not match neither the physical 

process not the equations.
 There are difficult to build and debug in case of models 

with a large number of blocks
 Fix computational causality
 Slow: interpreters
 Algebraic loops must be explicitly solved with additional 

blocks
 Limited separation model-experiment



Expression oriented languages

Standard  CSSL’67 (Simulation 1967 Vol.9, pp.281-
303)

Direct declaration of the model equations
Model description is given a temporal structure 
Separation model-experiment: command language
Code generators, compiled simulation code: Speed
Open to the outside world: Call...
Reuse of code: Macros



CSSL’67 Model editor

Errors / Equation ordering

Fortran code

Compiler+ Libraries

Results

Executable codeCommand language

Text 
editor

Builder
Code translator



CSSL’67
Program

Initial 

End

Dynamic

Derivative

End

Discrete

End 

End

Terminal

End

End

Initial conditions.  Code 
executed once at t= 0

Continuous 
equations

Discrete 
equations

Final computations. 
Code executed once 
at tstop

Description 
model structure

Fix 
computational 
causality

Simulation code 
similar to the 
mathematical 
model



Computations

Program

Initial 

End

Dynamic

Derivative

End

Discrete

End 

End

Terminal

End

End

Initialization of 
variables, 
including states

Expressions 
evaluated at 
certain times 
(Synchronous or 
asynchronous 
modes) or when 
a event takes 
place.

Expressions 
evaluated and 
integrated every 
integration 
interval

Global variables

Transfers to initial 
region are possible 
to create loops. 



Language

Equations similar to Fortran: exp, sin , IF THEN ELSE,...

Primitives: BOUND, REALP, DELAY,….

Function generators: SIN, PULSE,...

Tables 2D & 3D

Implicit equations: IMPLC 

Integrators: INTEG, several methods: Stiff, DASSL,... 

Event and discontinuities treatment: SCHEDULE, 
INTERVAL,..

External calls: Call...



Equation ordering

Automatic ordering of the 
equations following an 
algorithm similar to the one 
used with blocks

CONSTANT  R = 4.

S = 3.14 * R * R

F = S + exp( R )

V = INTEG( F, 0.1)

CONSTANT  R = 4.

V = INTEG( F, 0.1)

F = S + exp( R ) 

S = 3.14 * R * R

Procedural 
regions with fix 
sequential order

Fix computational causality



CSSL’67      ACSL

program prueba
initial
     constant  x0=0.1,  tmax=3.
     cinterval cint=0.35
     algorithm ialg=3
end
derivative
    constant tau=2.
    z = 5* x – 3*y
    x = integ(tau*y + sin(x) , x0)
    y = bound(-1.,1.,x)
    termt(t.gt.tmax)
end
end
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program prueba


initial


     constant  x0=0.1,  tmax=3.


     cinterval cint=0.35


     algorithm ialg=3


end


derivative


    constant tau=2.


    z = 5* x – 3*y


    x = integ(tau*y + sin(x) , x0)


    y = bound(-1.,1.,x)


    termt(t.gt.tmax)


end


end




ACSL Lenguaje de comandos: 
start, set, plot, 
analyse,…

Ficheros de 
Procedimientos



Modularity

A modular approach provides support to the 
description of a complex system using pre-
defined sub-systems

Helps library maintenance
Helps team working
Helps improving the readability and use of the 

simulation code



Macros

Macros encapsulate simulation code to facilitate its 
repetitive use in different places of the model description

There are different from subroutines: The code of a macro 
is expanded and analysed with the other equations before 
compilation
………..

Valve(u,1)

………….

Valve(aper,6)

MACRO Valve (a,n)                  
dp&n=(pe&n - ps&n)/den 
q&n = a*sqrt(dp&n) 

MACRO END



Macros

………..

Valve(u,1)   
…………. 
Valve(aper,6)

MACRO Valve ( a,n)                  
dp&n=(pe&n - ps&n)/den 
q&n = a*sqrt(dp&n) 

MACRO END

dp1=(pe1 - ps1)den 
q1= u*sqrt(dp1)
………...
dp6=(pe6 - ps6)/den 
q6= aper*sqrt(dp6)

Fix computational causality

It is difficult to operate with 
parameters in long chain calls

Global variables



Modelling Languages

• Direct declaration of the model equations
• Model description is given a temporal structure 
• Separation model-experiment
• Object oriented
• Code generators, compiled simulation code
• True modular modelling: They do not have fix 

computational causality



Example: DC Motor
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Structure of a model
COMPONENT motorDC

DATA
REAL J = 2        "momento de inercia"
REAL K = 3        "constante de par"
REAL f = 0.01     "friccion"
REAL R = 0.1      "resistencia"
REAL Ke = 0.5

DECLS
REAL T           “par”
REAL  w “velocidad”

INIT 
w = 30         -- initial condition

DISCRETE
WHEN (w > 1500) THEN

T = 20
END WHEN

CONTINUOUS
J*w'= K*i - f*w – T
v = R*i + Ke*w

END COMPONENT

Description of the model 
is similar to its 
mathematical formulation

Executed only once at time 0

Executed only when a logical 
condition is true

Executed continuously



Separation model- Experiment

EXPERIMENT exp1 ON motorDC.motor2

DECLS

INIT    -- set initial values for variables

w = 0

BOUNDS    -- set expressions for 
boundary variables: v = f(t,...)

v = 10

T = 2

BODY

REPORT_TABLE("reportAll", " * ")

TIME = 0

TSTOP = 5

CINT = 0.1

INTEG()

END EXPERIMENT

Experiment

Component

Model

COMPONENT motorDC

DATA
REAL J = 2        "momento de inercia"
REAL K = 3        "constante de par"
REAL f = 0.01     "friccion"
REAL R = 0.1      "resistencia"
REAL Ke = 0.5

DECLS
REAL T           “par”
REAL  w “velocidad”

INIT 
w = 30         -- initial condition

DISCRETE
WHEN (w > 1500) THEN

T = 20
END WHEN

CONTINUOUS
J*w'= K*i - f*w – T
v = R*i + Ke*w

END COMPONENT



Object oriented modelling

Component

Father

Child Child INHERITANCE: A 
component can inherit the 
behaviour and properties of  
other(s)

GENERICNESS: generic 
parameters/modes that are given 
values only when the component is 
going to be used 

Public 
interface

ENCAPSULATION: A component 
hides the complexity of  the model as 
only a certain part of  the model is 
made public



Connecting modules by ports

COMPONENT motorDC

PORTS
IN  Elec AL
IN  Mech_rot eje

DATA
REAL J = 2        "momento de inercia"
REAL K = 3        "constante de par"
REAL f = 0.01     "friccion"
REAL R = 0.1      "resistencia"
REAL Ke = 0.5

DECLS
REAL T       “par”
REAL w “velocidad”

CONTINUOUS
J*w'= K*AL.i - f*w – T
AL.v = R*AL.i + Ke*w
T = eje.T
w = eje.omega

END COMPONENT

Component

Electrical and mechanical ports 
have been defined…

Model

Body of the
Component

Port

Component 2

PORT Elec                  "Electrical pin" 
EQUAL REAL v    "Potential (V)"   
SUM   REAL i "Current (amp) "

END PORT



Hierarchical models



Modular modelling

Block oriented languages, do not allow true modular 
modelling, because they impose the computational causality 
at the model description stage

Modelling languages:

 They were developed to facilitate model reuse
 They do not have fix computational causality
 DYMOLA, GPROMS, MODELICA, OMOLA, 

ECOSIMPRO, ABACUS, JACOBIAN, ASPEN 
DYNAMICS…



Code to be executed depends on the aims 
and boundaries of the problem

21 ppkq −=

k
qpp

2

12 −=

Aim: To have a 
description of the 
model of a component 
independent from its 
use in a specific case.

p1

p2

q

If p1 and p2 are 
given:

If p1 and q are 
given:



Computational Causality
 

Different to the equation ordering  

Example: Two different implementations required for the resistor 

Current is computed from Voltage is computed from 
the equation I = V/R the equation V = IR 
   .   . 

Vo 

+ 

I=V/R 
Io 

+ 

V=I*R 

Computational 
causality assignment:
Which equation 
should be used to 
compute every 
unknown variable? 
Modelling languages 
perform the 
assignment analysing 
the whole set of 
model equations as a 
function of the 
known boundaries.

V = I R




Different to the equation ordering 
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Modelling Languages

• A model of a system is composed using a high level description, 
linking pre-defined modules representing sub-systems.

• Each module contains the mathematical description of a sub-
system

• Each module is linked to others through an interface or port, in 
the same way as in the physical world.

• BUT, the mathematical model of the system is generated later on, 
manipulating the whole set of equations as a function of the 
chosen systems boundaries. 

Va Vb

Ia Ib Va Vb

Ia Ib

Va Vb

Ia Ib

R1

C1

R2



Modelling Languages

R2

R3

R1
v1 i3

i1
vc v2

v3

i2

i1 = i2 + i3
v1 - vc = i1 * R1
vc - v2 = i2 * R2
vc - v3 = i3 * R3

Analysis of the whole 
set of equations

Model and code 
generation



EcosimPro

 First version 1992, Unix, ESA
 First version under Windows: 1999
 Object oriented tool
 Support continuous, discrete and discrete event processes
 Models are built by textual description of from graphical 

libraries.
 Provides a software development environment
 Open code, C++, ActiveX, OPC, FMI,…
 Version 5 on , 2013, multiplatform QT
 Proosis

Cesar de Prada ISA-UVA 54



EcosimPro
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Graphical environment

Cesar de Prada ISA-UVA 56



Modelling steps

Library of non 
causal models

Model built linking 
components

Analysis and computational 
causality of the whole set of 
equations (Partition)

Model with assigned 
computational causality

Experiment definition and 
Generation of C++ code

Simulation Code 
execution



Modelling Languages

R2

R3

R1
v1 i3

i1
vc v2

v3

i2

i1 = i2 + i3
v1 - vc = i1 * R1
vc - v2 = i2 * R2
vc - v3 = i3 * R3

Analysis



Model analysis and assignment of 
computational causality 
(Partition generation)

1. Specify the boundary conditions
2. Is it feasible to solve the problem with the specified 

boundaries? (Detection of structural singularities, Maximum 
Transversal Algorithm)
1. Inadequate Boundaries
2. High index models

3. Specify the equation that will be used to compute every 
variable and stablish the order in which the equations will be 
used (BLT Algorithm)
1. Whenever possible, work out every variable symbolically
2. Identify the possible algebraic loops  (Select tearing variables)

4. The partition is finished and ordered model equations are 
generated ready to be solved. 



MaximumTransversal Algorithm

R2

R3

R1
v1 i3

i1
vc v2

v3

i2

7 unkowns:

v1, v2, v3, vc, i1, i2, i3

3 data:   R1, R2, R3

4 equations
i1 = i2 + i3
v1 - vc = i1 * R1
vc - v2 = i2 * R2
vc - v3 = i3 * R3

The number of required boundary conditions is determined as the difference 
between the number of variables and the number of equations. Once a set of 
boundary variables is proposed by the user,  its validity is cheked with the 
Maximum Transversal algorithm 

3 boundary conditions



Ecuaciones          
Variables
f1(x1)= 0           x1
f2(x1,x2,x3)= 0     x2
f3(x1)= 0           ??

Ecuaciones           
Variables
f1(x1)= 0           x1
f2(x1,x2,x3)= 0     x2
f3(x1,x3)= 0        x3

Mathematically correct system System with a structural singularity

Is the system with the selected boundary variables structurally correct?       
A necessary condition for a model to be mathematically correct is the 
existence of a one to one correspondence between equations and variables.

MaximumTransversal Algorithm



Equations and Boundary Conditions Variables
Eq 1:    i1 = i2 + i3 i1
Eq 2:    v1 - vc = R1 * i1 i2
Eq 3:    vc - v2 = R2 * i2 i3
Eq 4:    vc - v3 = R3 * i3 v1
BC 1:    v1 v2
BC 2:    v2 v3
BC 3:    v3 vc

MaximumTransversal Algorithm

Example:  Valid boundary variables: v1,v2,v3



Example:  Valid Boundary variables: vc,v2,v3

I1 = 12 + i3 i1

V1 – vc = R1*i1 i2

V2 – vc = R2*i2 i3

V3 – vc = R3*i3 vc

Vc v1

V2 v2

V3 v3

Maximum Transversal Algorithm

But the simulation corresponds to a different problem  



Equations and Boundary Conditions Variables
Eq 1:    i1 = i2 + i3 i1
Eq 2:    v1 - vc = R1 * i1 i2
Eq 3:    vc - v2 = R2 * i2 i3
Eq 4:    vc - v3 = R3 * i3 v1
BC 1:    v1 v2
BC 2:    v2 v3
BC 3:    v3 vc

Example:  Wrong boundary variables : i1,i2,i3

Equations and Boundary Conditions Variables

Eq 1:     i1 = i2 + i3                   ???? i1
Eq 2:    v1 - vc = R1 * i1 i2
Eq 3:    vc - v2 = R2 * i2 i3
Eq 4:    vc - v3 = R3 * i3 v1
BC  1:  i1 v2
BC  2:  i2 v3
BC  3:  i3 vc

MaximumTransversal Algorithm



MaximumTransversal Algorithm
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In order to analyse the goodness of the selected boundary variables, a matrix 
is formed with two entries: the rows represent the equations and boundary 
variables, while the columns contain the model variables. This incidence
matrix has a one in a element if the variable considered appears in the 
corresponding equation and has a zero otherwise.

The Maximum transversal algorithm interchanges the matrix columns until  all 
elements in the diagonal are ones. Then the problem is structurally solvable.



MaximumTransversal Algorithm

 Which model variables are included in the analysis performed 
by the Maximum Transversal algorithm? 

 State variables x (which appear under the derivative sign) are 
considered known variables in the analysis because an initial 
value has to be assigned to them and, consequently, they are 
not included in the matrix of the Maximum Transversal.

 Derivatives of the state variables x’ are considered as 
unknown variables that must be evaluated for the integration 
of the system and, consequently, are in cluded in the matrix.  

x’ = dx / dt =  f(x, t)



MaximumTransversal Algorithm

 The boundary conditions are selected freely by the user, but it 
is possible to suggest him a coherent set or check the user 
selection. 

 When suggesting a set of boundary variables, a first choice 
refers to the variables assigned to unconnected ports, after 
checking that they satisfy the maximum transversal algorithm.

 If this choice fails, another set is selected iterating on the 
remaining variables.



Model analysis

 Have the model equations the adequate mathematical format to 
be solved? 

 The Maximum Transversal algorithm fails when a high index 
problem is present.
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DAEs / ODEs Models

 A set of Ordinary Differential Equations, where the derivatives 
of the state variables appear explicitly, as functions of the 
states and of known functions of time is denoted as ODE.

 When the derivatives do not appear as explicit functions, the 
system of equations is called a set of DAEs, Differential 
Algebraic Equations. This includes implicit differential 
equations and coupled sets of differential and algebraic 
equations. In general:

)u,x(f
td
xd =

0)u,x,x(F =



Index Problems

 Sometimes a set of DAEs can be converted to a set of ODEs 
managing the equations, nevertheless, if the matrix ∂F/∂ẋ is 
singular, the transformation is not possible unless some of the 
equations are differentiated with respect to time.

 The index of a DAE is the number of times needed to 
differentiate the DAEs to get a system of ODEs.

 A differential index of 1 is called low index, while it is called 
High index if it is 2 or larger.

 In systems with index 1 or larger, the maximum transversal 
algorithm fails in finding a feasible set of boundary conditions.

0)u,x,x(F = )u,x(f
td
xd =



Index problems

 Index problems appear many times associated to the 
formulation of a DAE model where the state variables cannot 
be computed freely, but are constrained by some bond 
equations. 

 Some integration methods may not consider these bonds and, 
consequently, they fail if applied to a high index problem.

 In particular, we cannot assign initial values to the states freely, as they 
must satisfy the bond equations.
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In the bond 
equations, all 
variables are 
known 
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Index problems: Examples
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dJ 21
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High index problems can be generated when linking together 
two components of a library because of the bond equations 
added by the ports: 

ω1 ω2

Rigid 
shaft

Equation generated by the mechanical port
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Index problems: Examples

Index problems can be generated when linking together two 
components of a library because of the bond equations added by 
the ports: 

V i

C

V1 V2

C1 C2

i1 i2



Index problems: Examples

V1 V2

C1 C2

i1 i2 V0I0
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V1, V2 are state variables as they
appear under the derivative sign.
I0 is chosen as boundary variable

Unknown variables: V1’, V2’, i1, i2, V0
Known variables: V1, V2, I0

Current
source

Only 4 equations contain 
the 5 unknown variables. 
This structure implies 
that there is no solution 
to the assignment 
problem with the 
maximum transversal 
algorithm

??

5 variables and 5 equations

but the bond equation V1 = V2
creates a structural singularity



High Index problems: Examples

 Sometimes high index problems 
appear due to the formulation of 
the problem, that does not follows 
the physical causality but 
corresponds to other problems 
like, e.g. control

 Which is the force that must be 
applied to a particle in order to 
move it according to a certain 
pre-specified trajectory?

)tsin(e)t(x
dt

xdmF

10/
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There is a boundary condition 
specified on a state variable 



High Index problems

 The Maximum Transversal algorithm fails when a high index problem is 

present. Example:

MAXIMUM TRANSVERSAL
F = m * v’                         v’

x’ = v                             x’

x = exp(-TIME/10) * sin(TIME)?? F

3   Equations
F = m * v’                                        
x’= v
x = exp(-TIME/10) * sin(TIME)

Known variables
v & x state variables
m data 
3    Unknown variables

F, v’, x’

Three variables 
that appear
only in two
equations. The
last one is
useless for
estimating F



Pantelides algorithm

 The Pantelides algorithm is used to transform high index problems into an 
equivalent lower index one.

 The algorithm adds new equations to the model obtained by differentiation 
of the ones that create the structural singularity (the bond equations), 
facilitating the application of the maximum transversal algorithm.

 As new equations are added, one should either  incorporate more variables, 
or substitute the bond equations by its differentiate form to balance the 
number of equations and variables. 

 The procedure is repeated until no structural singular set is found 

0)u,x,x(f
td
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td
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0
dt
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Pantelides algorithm

 One option to balance equations and variables is to substitute 
the bond equations by its differentiated form

 Another option is not replacing the bond equations, but adding some states 
as new variables. As the initial values of the state equations cannot be 
chosen arbitrarily, some state variables involved in the bonds are not 
computed by integration of the corresponding differential equation, but 
from the bond equations. This implies that these state variables can be 
considered as unknown and added to the list for  the analysis of the 
maximum transversal algorithm.
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Example

V1 V2

C1 C2

i1 i2 V0I0

V1and V2 are state variables
I0 is chosen as boundary variable

Unknown variables: V1’, V2’, i1, i2, V0
Known variables: V1, V2, I0

Current
source

Now there are 5 equations 
containing 5 unknown 
variables and the 
maximum transversal 
algorithm can be applied. 
But coherent initialization 
is required or  critical 
information can be lost 
about the initial values

5 variables and 5 equations

V’ = d \dt

Index one problem, as the 
bond equation  V1 = V2 has 
been differentiated only 
once20
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Example
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V1’  V2’   i1        i2    V0 V1’    i2      V2‘ i1      V0
x x

x x

x x

x x

x

This implies that the problem is now structurally solvable. A different 
problem is finding the right assignment and order of calculus between  
variables and equations
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Example

V1 V2

C1 C2

i1 i2 V0I0
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V2 is a state variable, but it will be 
considered as a variable as it will 
not be computed from integration 
of V2’, but from V2= V1
I0 is chosen as boundary variable

Unknown variables: V1’, V2’, i1, i2, V0, V2
Known variables: V1, I0

Current
source

Now there are 6 
equations containing 6 
unknown variables and 
the maximum 
transversal algorithm 
can be applied

6 variables and 6 equations

Index one problem, as the 
bond equation  V1 = V2 has 
been differentiated only 
once



Pantelides algorithm
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x x

x x

x

x x

x x

x x

x x

x x

x

x x

x x

x x

This implies that the problem is now structurally solvable. A different 
problem is finding the right assignment and order of calculus between  
variables and equations



Pendulum  (Index 2 problem) 
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The structural singularity is 
created by inadequate 
modelling: using cylindrical 
coordinate, the problem can be 
described with a single variable 
θ without bonds

There are 4 useful equations and 4 
unknowns x’,y’, vx’, vy’ but as we 
cannot initialize arbitrarily the four 
states, the bond equation is 
differentiated twice to find equations 
that provide the value of two of them 
instead of using integration of the 
corresponding differential equations.



Pendulum  (Index 2 problem) 
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It is possible to find a 
subset without 
structural singularity 
and, then, compute the 
other variables from 
the bond and 
differentiated 
equations

Obtained by 
differentiation



Pendulum ( another choice of 
state variables)
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If we select 
instead y, vy , 
as state 
variables, it is 
possible to 
have divisions 
by zero…

1 Solving first the subset of 
equations: 2 Then,computing the remaining variables 

from:



Index problems. Boundary 
conditions

 When selecting the boundary variables, care must be taken to 
avoid generating undesired index problems.

 If a state variable is selected as a boundary, a bond is 
automatically created. But as the Pantelides algorithm requires 
computing derivatives of the bond equations, it needs a 
explicit form of the time dependency of the variable, which is 
not given at the time of  partition definition. Because of this, 
state variables are not allowed as boundary variables. 

 If one wants to impose a certain time evolution to a state 
variable, it must add the corresponding equation x = f(t) as 
part of the model, so that its explicit form is known at 
partition generation time.



High  index example

EQUATIONS
F = m * v’                                        
x’= v
x = sin(TIME)
x’ = cos(TIME)
v’ = -sin(TIME))

There is a bond on the state variable x

The bond equation is differentiated twice, 
generating two equations that allow 
computing x’ and v’ from them, instead of 
by integration, avoiding the problems 
associated to the need of consistent initial 
conditions

Index 2 problem
F = m * v’            F                                     
x’= v                 v
x = sin(TIME)         x
x’ = cos(TIME)        x’
v’ = -sin(TIME))      v’

)tsin(e)t(x
dt

xdmF
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Ordering of equations           
BLT Algorithm

 Once we are sure there is no structural singularities in the model, the 
BLT (Block Lower Triangularization) algorithm can be used in order 
to find the right computational order of the system of equations. This 
algorithm operates with the incidence matrix, interchanging rows and 
colums until a lower triangular matrix is obtained. 
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87654321 If  this lower triangular matrix is 
found, then  the system of equations 
is an explicit one, and V1 can be 
computed form equation f1 , V2 from  
f2 , V3 from f3 , …

Whenever possible, symbolic 
manipulation can be used to work out 
explicitely each variable from the 
corresponding equation



BLT Algorithm, example
V0 - sin(time)  = 0

V0 - V1 - i * R1 = 0

V1 - V2 - i * R2 = 0

V2 - V3 - i * R3 = 0

V3  - L *  i’ = 0

ORDERED 
EQUATIONS

V0 = sin(time)
V1 = V0 - i * R1
V2 =  V1 - i * R2
V3 =  V2 - i * R3
i’  =  V3 / L

L

RRR

VA
C

G G

V0
V1

V3
V2

i

R1 R3R2

L1

Symblic 
manipulationBLT

i' V0 V1 V2 V3 V0 V1 V2 V3 i'
V0 - sin(time)= 0 0 x 0 0 0 x 0 0 0 0
V0 - V1 - i * R1 = 0 0 x x 0 0 x x 0 0 0
V1 - V2 - i * R2 = 0 0 0 x x 0 0 x x 0 0
V2 - V3 - i * R3 = 0 0 0 0 x x 0 0 x x 0
V3 - L *  i' x 0 0 0 0 0 0 0 0 x

BLT

X XX



Ordering of equations           
BLT Algorithm

 If a lower triangular matrix cannot be found, then, there are 
algebraic loops in the model.

 In this case, the BLT algorithm will find a block lower 
triangular matrix, with some square compact blocks Aii
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44434241

333231

2221

11

A.....A

0..

.0..

.0AAAA
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000AA
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Each block of size larger 
than 1, represents a 
subsystem of coupled 
equations that has to be 
solved jointly forming an 
algebraic loop.



BLT –Algebraic loops

V0 - sin(time)  =0

V0 - V1 - i * R1 = 0

V1 - V2 - i * R2 = 0

V2 - V3 - i * R3 = 0

V3’  - i / C = 0

ORDERED EQUATIONS

V0 = sin(time)

V3’ = i / C

BLT

RRR

VA
C

G G

V0
V1

V3
V2

i

R1 R3R2

L1C C

i V0 V1 V2 V3' V0 V1 V2 i V3'
V0 - sin(time)= 0 0 x 0 0 0 x 0 0 0 0
V0 - V1 - i * R1 = 0 x x x 0 0 x x 0 x 0
V1 - V2 - i * R2 = 0 x 0 x x 0 0 x x x 0
V2 - V3 - i * R3 = 0 x 0 0 x x 0 0 x x 0
V3'  -  i / C = 0 x 0 0 0 x 0 0 0 x x
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BLT example

V1’    i2      V2‘ i1      V0

x x

x x

x x

x x

x

V1 V2

C1 C2

i1 i2 V0I0

Current
source
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V1, V2, I0
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Solved as a 
set of 
algebraic 
equations 



Algebraic loops

 The BLT algorithm finds an ordered set of equations 
including possible algebraic loops ( subsystems of coupled 
equations)

 In order to solve the algebraic loops: 
– If all equations of the block are linear, it is possible to 

work out explicitly the variables involved using a symbolic 
manipulator, or solve the loop with an efficient linear 
solver.

– If the algebraic loop is non-linear, then the solution may 
require a non-linear solver, based on Newton-Raphson , 
besides the selection of the tearing variables.



BLT example

V1 V2

C1 C2

i1 i2 V0I0

Current
source

V0 i1      V1‘ i2     V2’ 
x

x x

x x

x x

x x

known:
V1, V2, I0
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Solved as a 
set of 
algebraic 
equations 
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As system is linear, 
using symbolic 
manipulations:



Loop Tearing

 Direct solution of an algebraic loop using Newton-Raphson 
method leads to an algorithm with a size of the Jacobian as 
large as the number of variables involved in the loop.  

 The use of Equation Tearing techniques allows sustantial 
reductions of the size of the Jacobian

Some (tearing) variables are selected, so that, 
if given an initial value, it is possible to 
compute explicitly the remaining variables of 
the loop. As the initial value may be wrong, 
there will be as many equations of the loop as 
tearing variables that will not compute equal 
to zero (residual equations). The Newton-
Raphson algorithm will iterate modifying the 
tearing variables until the residual equations 
are satisfied, but with a reduced Jacobian size.

F1(x1, x2) = 0
F2(x1, x2, x3) = 0
F3(x1, x2, x3) = 0

x2 selected as tearing 
variable

x1 = f1(x2)
x3 = f2(x1, x2)
F3(x1, x2, x3) = residual



Loop Tearing
V0 - sin(time)  =0

V0 - V1 - i**2 * R1 = 0

V1 - V2 - i**2  * R2 = 0

V2 - V3 - i**2  * R3 = 0

V3’  - i / C = 0

ORDERED EQUATIONS

V0 = sin(time)

i  tearing variable
V1 = V0 - i**2  * R1

V2 = V1 - i**2  * R2

F(i) = V2 - V3 - i**2 * R3 = 0

V3’ = i / C

BLT

RRR

VA
C

G G

V0
V1

V3
V2

i

R1 R3R2

L1C C

i V0 V1 V2 V3' V0 V1 V2 i V3'
V0 - sin(time)= 0 0 x 0 0 0 x 0 0 0 0
V0 - V1 - i * R1 = 0 x x x 0 0 x x 0 x 0
V1 - V2 - i * R2 = 0 x 0 x x 0 0 x x x 0
V2 - V3 - i * R3 = 0 x 0 0 x x 0 0 x x 0
V3'  -  i / C = 0 x 0 0 0 x 0 0 0 x x

Residue equation



Loop Tearing

Loop Tearing methods have some weakness:
 Tearing algorithms are based on heuristic rules 
 There is no algorithm that provides the best choice among the 

different possible sets of tearing variables.
 As a consecuence, the user can select a better set of tearing 

variables if it is not satisfied with the selection made by the 
simulation environment



DAEs and algebraic loops

Solve 
algebraic loops

Initialization

Compute 
model residuals

Solve 
integrators

Residuals from 
algebraic equ.

Initialization

Other residuals

Solve DASSL

Only one 
single 
Newton 
iteration 
is needed

DAE solvers 
do not require 
solving 
algebraic loops 
independently



Model editor and error cheking (Compile)

Selection of boundary variables and partition generation

C++ Class

Compiler + internal Libraries+ Calls to external software

Run-time Executable code

Specify experiment

Overall steps
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