Combinational and sequential systems

Prof. Cesar de Prada
Dpt. of Systems Engineering and Automatic Control UVA
prada@autom.uva.es

Outline

\checkmark Discrete events systems
\checkmark Combinational logic
\checkmark Sequential systems
\checkmark Programmable Logic Controllers (PLC)

- Functions and architecture
- Software
\checkmark Batch process Control
\checkmark Safety systems

Discrete events systems

\checkmark Many processes involve discontinuous elements
\checkmark Some of its variables only take an integer number of values
\checkmark The values of some variables only change at certain time instants (events)
\checkmark Logic and sequential control problems

Discrete states

Motor:
Stop / Running

Tank:
Full / Empty

Valve:
Open / Closed

Instrumentation

The signal from the instrument takes only two values and changes when the event takes place:

Minimum Level detector: When the level is above the minimal level, the signal is activated

Closed
circuit \quad Open circuit
NO / NC normally open /close

Instrumentation

Thermostat:
When the
temperature rises up to a certain limit the sensor is activated

5V

Pressure switch

Instrumentation (Detectors)

Presence
Detector
Infrared safety
beam

Limit switch

Instrumentation (Actuators)

On/off valve
Electrovalve

Solenoid valve

Pneumatic valve

Combinational systems

\checkmark The value of the system output depends only on the current value of the system inputs, through combinations of the logic functions AND, OR, NOT
\checkmark IF (Logic statements)
THEN (actions)
\checkmark Associated to alarms or logic of operation
\checkmark How to represent the logic and perform the actions?

Combinational Logic

AND	1	0
1	1	0
0	0	0

OR	1	0
1	1	1
0	1	0

NOT	1	0
	0	1

A.B AND
 A+B OR

Morgan $\overline{(A+B)}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$

A \quad NOT
Laws
$\overline{\mathrm{A} . \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$

Logic gates

Logic expressions can be assimilated to electrical circuits where true/false can be represented by the presence or not of an electrical signal and the conclusion is expressed in terms of the value of the output signal

Logic gates (Block functions)

Contact (Ladder) diagrams

Current

If the switch is closed, then the current flows through the circuit and the light bulb is activated

Logic expressions can be assimilated to electrical circuits where false/true can be represented by open or closed switches and the conclusion is expressed in terms of the current the flows or not in the circuit

Ladder diagrams

Load

Normally Open Contact

If the event takes place, the contact will close and the current will flow

Load bar

Contactor

Normally Closed Contact

If the event takes place, the contact will open and the current will stop flowing

Combinational logic using contacts

The ligh bulb is on if any, A or B, is closed

Contact diagrams

Element to be activated

Logic function: $(A+B) . C . \bar{D}$

Relay

Most of the times the current circulating on the circuit is too small to activate a dispositive (light bulb, motor, horns,..). For this purpose, a relay is used.

Contact diagrams

In the contact (ladder) diagram only the coil of the relay is represented

Contact diagrams

Relay induction coil

S1 or S2 can be any element providing a 0 - 1

 signal: timers, counters, detectors, switches, etc.

Push-button switch

normally open
Push-button switch
 normally closed

Example

The bottle should stop al the end of the conveyor and be filled with a certain amount of product. P1 starts the conveyor again

Example: Safety system

The steam input is stopped if the temperature or the level are out of limits 21

Batch processes /Sequential systems

Sequence of stages with specific actions associated and transition conditions between them:

1 Waiting
2 Loading
3 Heating
4 Unloading
Unload

State transition graphs

Transitions

State transition graphs

Transitions between
states are formulated as
logic functions of the system variables or time.
A transition can be activated when the system is in the previous state and the logic condition is true. Each state have a set of associated actions.

Synchronous and asynchronous processes

\checkmark Synchronous: State changes take place only at precise time instants marked by the pulses of a clock
\checkmark Asynchronous: State changes take place at any time as a function of the values of its input variables.

SFC / Grafcet

\checkmark SFC Sequential Function Chart
\checkmark Graphical description of a sequential system
\checkmark Predecessor: Petri Nets
\checkmark They can be used at different levels
\checkmark Stages, transitions, actions

SFC

When the logic condition associated to a transition becomes true (and the process is in the corresponding stage), the current stage is deactivated and the following one is activated, besides executing all its associated actions. The logic condition can be formulated in any of the IEC 61131 languages

Variables associated by default to a stage:
stage. $\mathrm{X}=1$ if the process is in this stage, 0 if not
stage.T = elapsed time from the moment the stage was activated

Parallel sequences

Simultaneous
convergence: Only when both, Oper3 and Oper4, are active and the transition condition is fulfilled, the Unloading stage is activated.

Actions

Action: Single name describing the action, either in the SFC or using an IEC
language

Qualification: It describes when the action will take place

Actions

$\mathrm{N} \quad$ The action is executed while the stage is active
S The execution of the action continues until a reset is activated

R reset of a previous action
D x The action is executed x sec . after the stage is activated and while it remains active

L The action is executed only once when the stage is activated

Example

Programmable Logic Controllers (PLC) (Autómatas programables)

Computerized devices that implement combinational and sequential functions connected to a process.

Late 1960's
Modicon
(High end PLC with many more functions)
-CPU
-Communications
$\cdot \mathrm{I} / \mathrm{O}$ cards
-Power supply

TSX Nano (Modicon)

PLC Architecture

A: Power supply and battery
Different types of I/O cards

I / O cards

\checkmark Input cards contain input relays, transistors, etc. (contacts) connected to the external world: sensors, switches, etc. that receive the fields signals and convert them to $0 / 1$ values in the PLC memory.
\checkmark Output cards contain output relays, triacs, transistors, etc. (coils) connected to the external world: solenoids, lights,, etc. They send to them on/off signals according to the $0 / 1$ values in the PLC memory.
The PLC software contains virtual relays, counters, etc., used to implement the required logic and sequential functions.

PLC Operation / Scan cycle

Programming

Firmware + configuration
Transfer to the PLC by RS-232 or network link
The program can be executed in different ways: cyclic operation, at a given time, when an event takes place, etc.

The PLC operation can be supervised from a PC

PC + PLC

IEC 61131-3 Norm

\checkmark Sequential Function Chart (SFC) (Grafcet) structures the internal organization of a program. Four interoperable programming languages:
\checkmark Structured Text (ST) ~ Pascal
\checkmark Function Block Diagram (FBD)
\checkmark Ladder Diagram (LD)
\checkmark Instruction List (IL)

000	LD	$\% 10.1$	Bp. inicio ciclo
	AND	$\% 10.0$	Dp. presencia vehículo
	AND	\%M3	Bit autorización reloj calendario
	AND	$\% 10.5$	FC. alto rodillo
	AND	$\% 10.4$	Fc. detrás pórtico
005	S	$\% M 0$	Memo inicio ciclo
	LD	\%M2	
	AND	$\% 10.5$	
	OR	$\% 10.2$	Bp. parada ciclo
	R	\%M0	
010	LD	\%M0	
	ST	$\% Q 0.0$	Piloto ciclo

http://www.plcopen.org/

Ladder Diagrams

\checkmark Graphic programming
\checkmark It tries to imitate the electrical circuit diagrams with relays, timers, etc. used by electricians in the past.
\checkmark The steps are executed sequentially from top to bottom, from left to right

Ladder

Self-maintenance

Starting and stopping a motor with two switches

Also:
(RES $\begin{aligned} & \text { Latching } \\ & \text { instructions }\end{aligned}$

Programming sequential systems with Ladder diagrams

\checkmark Three groups of rungs:

- Rungs to activate stages
- Rungs to activate transitions between stages
- Rungs to activate actions associated to each stage

Example: Stages

E Stage
T Transition crossing condition Initialization

Stage jump

Actions

A,B,C,D Electrovalves

Timers

Ton, Tof Timer on/off Delay. The output is activated n time units after the input is activated. The timer is reset if the input does not keep active for n seconds

The output is activated n time units after the input is activated. If e is deactivated before n, the timer keep the accumulated time. The timer is reset only if the reset signal is activated

A small change in stage 3

Counters

> The output is activated when the input changes from false to true n times. The counter is reset to zero when the reset input is activated.

IEC SFC

\checkmark SFC Sequential Function Chart
\checkmark Graphical description of a sequential system
\checkmark Predecessor: Petri Nets
\checkmark Very similar to Grafcet
\checkmark It can be used at different levels
\checkmark Stages, transitions, actions

PLC networks /buses

ASI
 BITBUS
 MODBUS UNITELWAY
 OPC

Among PLCs
With the instrumentation

TSN N A N O

Number od inputs: 9 (\%I0.0 to \%I0.8). (positive logic)
Number of outputs: 7 (\%Q0.0 to \%Q0.6), relays.

Links/Operating modes:
Stand alone
Up to 1 Input/output extension.

Up to 3 Automaton extension.
s2

Traffic lights

Batch process

TSX Nano

Each automata have a selector to choose an operating mode: Switch to 0: Master. Switch to 1: Input/output extension of the master. Switch to 5, 6 y 7: The PLC works as an extension of the master

I/O Extension

PLC and I/O extension

I/O naming

Wiring

Names of variables

Tipo	Dirección (o valor)	Número máximo	Accesoen escritura(1)	Ver apart.
Valorinmediato	061	-	-	-
Bits de entrada desalida	$\begin{array}{\|l\|} \hline \text { \%I0.i o \%l1.i (2) } \\ \% 00.10 \% \text { 1.i(2) } \\ \hline \end{array}$	$\begin{aligned} & 28 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { si } \end{aligned}$	$\begin{aligned} & 1.5 \\ & \operatorname{Sec} . \mathrm{A} \end{aligned}$
Bits internos	\%Mi	128 (3)	si	
Bits de sistema	\%Si	128	según i	5.1
Bits de etapa Grafcet	\%Xi	62	sil	2.3-1
Bits de bloques función	\%TMi.Q \%DRiıF....		no (4)	2.2-1
Bits bloques función reversible	E,D,F,Q,TH0,TH1		no	3.3-1
Bits extraidospalabr.				3,1-1

Functional blocks

Bloques función estándares	Palabras y bits asociados		Dirección	Acceso escritura	Ver Ap.
Temporizador \%TMi $(\mathbf{i}=0$ a 31$)$	Palabra	Valor actual	\%TMi.V	no	2.2-3
		Valor de preselección	\%TMi.P	sí	
	Bit	Salida temporizador	\%TMi.Q	no	
Contador/ descontador $\% \mathrm{Ci}(\mathrm{i}=0$ a 15)	Palabra	Valor actual	\%Ci.V	no	2.2-4
		Valor de preselección	\%Ci.P	sí	
	Bit	Salida desbordam.(vacio)	\%Ci.E	no	
		Salida preselec. alcanzada	\%Ci.D	no	
		Salida desbordam. (lleno)	\%Ci.F	no	
Registro palabra \%Ri $(\mathbf{i}=0$ a 3)	Palabra	Acceso al registro	\%Ri.I	sí	2.2-5
		Salida del registro	\%Ri.O	sí	
	Bit	Salida del registro lleno	\%Ri.F	no	
		Salida del registro vacio	\%Ri.E	no	
Programador cíclico$\% \text { DRi }(\mathrm{i}=0 \text { a } 3 \text {) }$	$\begin{aligned} & \hline \text { Palabra } \\ & \hline \text { Bit } \end{aligned}$	№ de paso en curso	\%DRi.S	sí	$\begin{aligned} & 2.2-6 \\ & \text { no } \end{aligned}$
		Ulitimo paso definido en curso		\%DRi.F	

SIF SIS SIL

\checkmark They are systems oriented to guarantee safe operation of the process or a controlled shut-down if necessary. IEC 61508 (ISA S84.01), IEC61511 standards
SIF Safety Instrumented Function (Set of actions that protect a process against a particular risk)
SIS Safety Instrumented Systems (composed of several SIF)
SIL Safety Integrity Level (1, 2, 3) (Level of protection of a SIF)
The design of the control system of a process and its safety system must be performed jointly, but they must be implemented separately

SIS

1 Sensors (different from the ones of the control systems and with separate wiring)

2 Associated safety logic implemented in an independent PLC

3 Actuators
Key information: Mean Time

Per IEC 61508, the DeltaV SIS system and the DeltaV system are separate, yet have integrated engineering software.
¿Qué hace un SIS ?

SIL of a SIF

Table 1: Risk Based on Frequency

Risk level	Descriptor	Frequency of Occurrence
5	Frequent	One per year
4	Probable	One per 10 years
3	Occasional	One per 100 years
2	Remote	One per 1,000 years
1	Improbable	One per 10,000 years

Table 2: Risk Levels Based on Severity

Risk level		Descriptor		Potential consequences
5	Catastrophic	Multiple deaths		
4	Severe	Death		
3	Serious	Lost time accident		
2	Minor	Medical treatment		
1	Negligible	No injury		

Table 3: Safety Integrity Levels: Target Failure Measures

SIL	Risk Reduction Factor	Average PFD
1	10 to 100	0.1 to 0.01
2	100 to 1,000	0.01 to 0.001
3	1,000 to 10,000	0.001 to 0.0001

Sistemas Instrumentados de Seguridad SIS -SIL

