
Unconstraint Optimization 

Prof. Cesar de Prada 
Dpt. Systems Engineering 
and Automatic Control 
UVA 
prada@autom.uva.es 



Outline 

 Theoretical solution 
 Optimizing a function of one variable 

– Newton type methods 
– Bracketing methods  
– Polynomial approximation methods 

 Multivariate methods 
– Gradient based algorithms 
– Newton type algorithms 
– Gradient free algorithms 

 Software 

There exist many 
methods. Only some of 
them will be 
considered in the 
course 



Extremum analytical conditions 
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In unconstraint optimization 
problems there exist a set of 
analytical conditions for a point 
being the solution 
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The hessian H determines the character of 
the possible optimum 

Necessary 
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Multivariable Optimization 

 Example 
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Iterative methods 

Contours of J(x) 
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Iterative methods: 

Starting from an initial guess  
x0 , the algorithm provides a 
new point located in a 
searching direction sk that 
provides a better value of J. 

The algorithm continues 
iterating until xk is closed 
enough to the optimum 

xk xk+1 

sk 

xk = value of vector x in the stage  k 

σksk 



Criteria for stopping the iterations 

ε Sets the precision or tolerance 

ε0 > 0 avoids divisions by zero 

xk xk+1 
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1 El gradient is small enough 

2 The solution does not move in a 
significant way 

3 The cost function does not improve 
in a significant way 

4 The number of iterations exceeds 
a certain maximum number N 



Properties of an iterative algorithm 
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sk 

Stability / Convergence  

The step length of every iteration 
is decreasing 

Convergence to the optimum 

Local / Global convergence 

Iterative algorithms are discrete 
dynamical systems and can be studied  



Properties of an iterative algorithm 

xk xk+1 
sk Speed of convergence to the 

optimum.       
c speed of convergence  p order of 
convergence 
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Superlineal speed of convergence 



Multivariable Optimization 

 Many approaches: 
– Gradient based methods 
– Newton type methods 
– Gradient free methods 
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Gradient based methods 

The gradient vector of 
J(x) at x points to the 
direction where the 
function J has the bigger 
increase.  

The opposite direction is 
the one with the 
maximum decrease of 
the function J, and can 
be considered as a good 
searching direction 

Contours of J(x) 
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Steepest descent method 

Contours of J(x) 
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Move as much as possible in 
the direction of maximum 
decrease performing an (scalar) 
optimization of the step length 
σk 



Quadratic functions 

Any function continuously differentiable can be approximated by a 
quadratic one near the optimum: 
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The region x’Cx ≤ 1  
is convex if C is PSD 

They are fairly easy functions, so that if a method does not work well with 
quadratic functions, likely it will not work well with other functions. 



Steepest descend algorithm applied to 
quadratic functions   
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C, Symmetric definite positive 

A quadratic function is a good 
candidate for testing the 
method because many 
functions can be approximated 
by quadratic ones near the 
optimum, they are easy to deal 
with and have analytical 
solutions. 

Converges to the optimum when k→∞ ? 

Speed of convergence 



Steepest descend algorithm 
applied to quadratic functions  
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Steepest descend algorithm 
applied to quadratic functions  
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Banana Function (Rosenbrock) 
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Steepest descend algorithm 
applied to quadratic functions  
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Convergence?  The exact optimum is reached when g(x)=0 

With quadratic functions, the steepest descend either reaches the 
optimum in the first step or never 

Assume that g(x0)≠ 0,    Then, it may happens that g(x0) is or not an 
eigenvector of C.   



Steepest descend algorithm 
applied to quadratic functions  
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If g(x0) is an eigenvector of C: 

And the optimum is reached in the first 
iteration of the algorithm 
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Steepest descend algorithm 
applied to quadratic functions  
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If g(x0) is not an eigenvector of  C, then: 

And the optimum is not reached in the 
next iteration 



Steepest descend algorithm 
applied to quadratic functions  
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In addition, g(x1) is not an eigenvector of C:         
In fact, if it were true, then there exist a λ such that: 

Which contradicts the expression (*), hence , by 
induction, it is proved that the optimum will never 
be reached, even if  k→∞ 

(*) 



Newton type methods 
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Approach: Design a perfect method for a quadratic function and 
extend it to other functions. 

Assume that J(x) is a quadratic function, Which should be ∆x so that 
the optimum is reached in a step? 

C is the hessian, or matrix 
of second derivatives of J 



Newton’s method 

By analogy, when J(x) is any twice differentiable function, we 
could use the algorithm: 
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As the algorithm progresses and J(x) approaches the optimum, 
then J(x) will be more similar to a quadratic function and the 
algorithm will converge faster to the optimum. 

Second order method 

sk search direction in 
the step k 
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As J is quadratic: 

Excel 



Convergence 

k
k 1 k k

k k k k
12

k
k k k k2

J(x )J(x ) J(x ) x
x

J(x ) g(x ) ' s

J(x )J(x ) g(x ) ' g(x )
x

+

−

∂
≈ + ∆ =

∂
= + σ =

 ∂
= −σ  ∂ 

In a first order approximation: 

kkk1k

k
1

kkk

k
1

kk

sxx

))x(g)x(Hx(Jmin

)x(g)x(Hs

k

σ+=

σ−

−=

+

−

σ

−

Verification: sk is a descent direction if: 
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-g(xk) 
sk 

If the Hessian is not PD, 
then there is no 
guarantee that J(x) 
decreases every step 

Only if J(x) is convex we 
can guarantee that H is 
PD 



Advantages / disadvantages of the 
Newton’s method 

Advantages: 

Usually less iterations are required to reach the optimum 

Disadvantages: 
The Hessian and the gradient of J(x) are required 
The Hessian must be inverted 
There is no guarantee that in a certain step the Hessian is PD and 
the method converges 

The gradient and the Hessian can be 
approximated by finite differences 
 
Instead of inverted the Hessian, it is 
possible to solve a linear set of 
equations to compute sk: 
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Marquardt-Levenberg’s Algorithm  

It modifies the Hessian in order to guarantee that it is PD every step 
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Marquardt-Levenberg’s Algorithm 
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Minimization with respect to σk 

Any of the single variable optimization methods can be applied 

Sometimes, for simplicity, a value of σk is chosen with the only condition 
that J(x´k) decreases in the corresponding step. 

J(xk+σksk) 

σk 

σk must be ≥ 0 and the value of the pure 
Newton’s method corresponds to σk =1 

J can be evaluated at σk = 0 and 1, if it 
does not decreases, then a quadratic 
interpolation can be computed, as two 
points J(xk+sk), J(xk) plus g(xk)’sk are 
known,  and σk can be obtained as its 
minimum: k k

k
k k k k k

g(x ) 'sˆ
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J(xk+sk) 
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Quasi-Newton Methods 

They try to avoid the computation of the inverse of the Hessian, which 
is a time consuming tasks, substituting it by a matrix Ĥk definite 
positive that approaches  H(xk)-1 after some steps. 
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Any approximation B (of second order) to the Hessian should verify: 

Taylor series expansion of J(x) at xk : 



Quasi-Newton Methods 
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Computing the gradient of J(xk+1) with respect to ∆x: 

Hence, a matrix    that be a second order approximation of the inverse 
of the Hessian should verify: 

kk x)x(gH~ ∆=∆

H~



Quasi-Newton Methods 

kk1k

kkk

TH~H~
)x(gH~s

+=

−=

+

Search direction 

Update formula with Tk a correction matrix 
sartisfying: 
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We start with an initial PD matrix Ĥ0 and compute the first step in the 
search direction:                                   Then, we look for a correction T0 
such that Ĥ1 = Ĥ0 + T0 verifies the above mentioned condition: 
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There are several choices of Tk 
satisfying this relation 

In general: 



Quasi-Newton Methods 
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There are several choices of Tk satisfying: 



DFP Algorithm (Davidon, Fletcher, 
Powell) 
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In particular, the choice: 

Leads to the DFP method, which, when applied to quadratic functions, 
gives an exact estimation of the hessian after n steps. n = size of x 



DFP Algorithm (Davidon, Fletcher, 
Powell) 
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BFGS Algorithm (Broyden, Fletcher, 
Goldfarb, Shanno) 1970 

zA'v1
A'zvAA)zv'(A

usingestimated  can beBH~
xB'x
B'xxB

)x(g'x
)'x(g)x(gBB

T of expression n thei )x(g with  xwaps
)x(gH~x
)x(gxB

1

11
11-

1
1k1k

kkk

kkkk

kk

kk
k1k

kkk

k1kk

kk1k

−

−−
−

−
++

+

+

+

+
−=+

=

∆∆
∆∆−

∆∆
∆∆+=

∆∆
∆=∆

∆=∆

The Hessian is recursively 
estimated 

∆x y ∆g play symmetric roles in 
relation with DFP 

If Bk es PD and ∆xk’∆g(xk) > 0 
then Bk+1 is PD. If not, Bk is not 
updated 

if J(x) is convex, 
then Bk is 
always PD 



BFGS Algorithm (Broyden, Fletcher, 
Goldfarb, Shanno) 1970 
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Usually is more efficient than DFP 



Methods using values of J(x) only 
(Direct search) 

 Methods based on the use of the gradient of J(x) work well when 
applied to “smooth” functions, even if they are many decision 
variables.  

 Nevertheless, in practice, the computation of the gradient can be 
difficult, or even impossible, due to discontinuities, complex non-
linearities, etc. 

 Very often, numerical estimations of the gradient based on finite 
differences are time consuming. 

 An alternative for those situations where the gradient is difficult to 
obtain is to relay on optimization methods that only use values of J(x), 
e.g.: 
 

– Simplex 
– Powell’s conjugate directions 



Simplex search method 

 This type of methods uses sets of points where the value of J(x) is 
evaluated, located on places that form a certain pattern, employing these 
values to evolve towards a new pattern closer to the optimum. 

 The easiest geometrical figure in a n-dimensional space is called a 
simplex and has n + 1 vertices. For instance, a simplex in R2 is an 
equilateral triangle, in R3 un tetrahedron, etc. 

 The simplex search method employs the values of the function in the 
n+1 vertices of this geometrical figure to generate another simplex 
located closer to the optimum and continues the iteration until the 
optimum is found within the required precision. 

 Excepting the name, it has nothing in common with the LP Simplex 
method. 



Simplex 



Simplex search method 

1  J(x) is computed in the 
n+1 vertices of the simplex 

2  The vertex with the worst 
value is selected and 
projected a certain distance 
through the centroid formed 
by the remaining vertices.  

3  A new simplex is formed 
with the projected vertex 
and the remaining ones 

4  If there is an 
improvement, the iteration 
continues until the required 
tolerance is met 

vertex 
centroid 



Simplex search method, 

When the iterations advance, either the optimum is reached or it is 
possible that, before reaching the optimum with the required precision, 
a cyclical situation appears between two or more simplexes. In order 
to avoid these cycles, three rules are applied: 

1 If the worst vertex was already generated in the previous iteration, 
then change to the second worst vertex. 

2 If a vertex remain in the same value for more than M iterations, then, 
reduce the size of the simplex by a factor, using as a base the point 
with smaller value of J(x). Advise: M = int (1.65n + 0.05n2) 

3 The iterations are finished when the simplex is small enough or the 
standard deviation of the values of J(x) evaluated in the vertices is 
small enough 



Generation of points of the simplex 

Starting from the base point x(0) and a given scale factor α, the 
coordinates of the remaining vertices x(i) , i= 1,...,n  of an initial regular 
simplex can be computed by: 
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Nelder – Mead’s method 

Instead of using a regular simplex, it expands or contracts it according to 
a set of rules in order to improve the convergence. 
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Jm < J(xr)< JM 

θ = 1 

JM < J(xr) ≥ J(xold) 

θ = - 0.5 
xr 

Normal 
reflection 

JM < J(xr) < J(xold) 

θ = 0.5 J(xr)< Jm 

θ = 2 

Jm lowest value of 
J on simplex 

JM second highest 
value of J on the 
simplex 

xold 



Nelder – Mead’s method 

 Advantages: 
– Easy to implement, requiring small storage resources and 

evaluations of the function only. 
– Few adjustable parameters 
– Robust againt noises and errors in the computation of the 

function as it uses the worst value 

 Disadvantages: 
– Scaling of the variables id required 
– Slow convergence as it does not use neither pass iterations 

information nor structural one 



Powell’s conjugate directions method 

In a similar way as other methods, the design of the 
method is made with reference to a quadratic function, 
applying it later on to any J(x) 

Cx'x
2
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How to find the minimum of J(x) without using the gradient 
or the Hessian? 

The core idea is to look for the minimum along each of the 
so-called C-conjugate directions, on which the function J(x) 
only depends on a single component of vector x, so that the 
search can be performed with mono-dimensional methods 



C conjugate directions 
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If a matrix S diagonalizes C, so that S’CS = 
D is diagonal, then, using the coordinate 
system given by:  z = S-1x  

As there are no cross terms in z because D is diagonal, the function J(Sz) is 
separable and its minimum can be computed as a sequence of n minimization 
problems with respect to every component  zj of z 
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Minimize J(Sz) over every component zj of z is equivalent to minimize 
J(x) over every one of the n directions called C-conjugates 

C conjugate directions 

s1 

s2 Using this method, after n 
iterations we will reach the 
optimum of a quadratic function 

The new axis coincide with 
the main directions of J(x) 



C conjugate directions 

Condiction S’CS = D diagonal can be formulated as: 
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Definition: Given C (n x n) symmetric, the directions s1, s2, ...sr  r ≤ n are 
C-conjugates if they are lineary independent and verify: 

ji0Cs's ji ≠=



Parallel subspace property 

Given a quadratic function J(x) and a direction d, ∀ x1 ≠ x2 ∈Rn it happens 
that if v1 is the solution of  

)dx(Jmin 1 σ+
σ

And if v2 is the solution of )dx(Jmin 2 σ+
σ

Then, the direction v2 – v1 is C-conjugate to d 

d 

d 

v1 

v2 

x1 

x2 
v2-v1 



C conjugate directions 
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So, direction v2 – v1 is C conjugate with d 

The idea can be extended to n directions: If starting from x1 and x2 we 
obtain v1 and v2 after m < n searches over the m conjugate directions  
s1, s2,...,sm, then v2 – v1 is C-conjugate with all the s1, s2,...,sm directions 



Powell’s conjugate directions method 

For the generation of two conjugate directions, the parallel 
subspace property uses two stating points and two minimizations in 
a common direction d. The same result can be obtained with one 
single starting point and more minimizations: 

x0 x1 

x2 x3 

As we can see in the Figure, minimizing J(x) 
successively over the n directions of the axis of 
x, the n+1 minimization is parallel to the first 
one, so that vector xn+1 – x1 is C-conjugate to 
the first axis. Minimizing in this direction and 
repeating the procedure successively, the  
minimization over the n C-conjugate directions 
can be performed and the optimum reached, 
without computing the diagonalization of C 



Powell’s conjugate directions method 

1. Choose x0 and n linearly independent directions, e.g. si = ei 
2. Built the set of n+1 search directions  sn, s1, s2, s3, ...,sn  
3. Minimize J(x) over the n+1 search directions successively. Be vj 

the optimum in the j-iteration 
4. Compute a new search direction as sn+1= vn+1 – v1 that will be C 

conjugate to sn (and to the previous ones) 
5. Use as new set of n+1 search directions sn+1, s2, s3, ...,sn ,sn+1 

where s1 has been scratched and sn+1= vn+1 – v1 has been added 
6. Check if the optimum has been reached as well as the linear 

independence of the n different si 
7. Go back to 3 



Powell’s conjugate directions method 

 If J(x) is quadratic, after n loops, the n+1 
searches are made over conjugate directions 
and the optimum is reached exactly 

• If J(x) is not quadratic, it can be proved that 
the algorithm has superlinear convergence to 
the optimum 

• Is an efficient and reliable method 



Fitting a curve to a set of data by least 
squares (LS) 

y 

x 

(xi, yi) 
y = mx+b 

Find the linear relation that better fits 
to a set of N couples (xi, yi) of 
experimental data.  The problem can 
be formulated as an optimization one: 
Look for the straight line parameters 
(m , b) that provide a minimum value 
to the sum of the squares of the 
deviations between the data and the 
formula 
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There exist an analytical solution 



Data fit 

y 

x 

(xi, yi) 

y = f(x,p) 

The idea can be extended to any function   
y = f(x, p) that should fit a set of  N couples 
of data (xi , yi). Here p are the unknown 
parameters that must be estimated. 
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2
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The problem can be formulated as the minimization of the sum of 
squares of the residuals  yi – f(xi,p) with respect to the function 
parameters p  



Redlich-Kwong’s equation  

Empirical relation among: 

Pressure P 

Temperature T 

Molar volume v 

of a real gas 

T)bv(v
a
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=

a and b are unknown coefficients that must 
be estimated using experimental data 

Example: CO2 data 

volumen molar  v Temperatura T Presión       P 

500 273 33 

500 323 43 

600 373 45 

700 273 26 

600 323 37 

700 373 39 

400 272 38 

400 373 63,6 

Excel 



Solving algebraic equations 

In many problems it is necessary to solve equations such as: 
             f(x) = 0 

Or sets of equations : 

There are several methods available:   

Newton 

Secant 

Bisection 

But also can be formulated as optimization problems 





=
=

0)y,x(g
0)y,x(f



Newton’s method 
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Newton-Raphson 
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It is necessary to compute and estimate the 
Jacobian every step 



Secant method 
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f(x) 
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xi 

xi+1 xi-1 

f(xi) 

f(xi-1) 

f(x) 

x 

xi 

xi+1 

xi-1 

f(xi) 

f(xi-1) 

It avoids the 
computation of 
the derivatives 



Initialization problem 

F(x) 

x 

F(x)=0 



Oscilations  

F(x) 

x 

F(x)=0 

xi xi+1 



Formulation as an optimization 
problem 
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21 If the problem is feasible, the 

minimum of ε1
2 + ε2

2 , is (0,0), so 
that x and y will verify the set of 
equations 
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Some important points with regard to 
the numerical solution of optimization 
problems 

Once an optimization problem has been formulated, it is 
convenient to reshape it in order to facilitate its numerical 
solution and the search of the optimum. 

Among possible changes in the formulation we can mention: 

Scaling the independent variables 

Changes to avoid computations out of the admisible range in 
functions such as: log(x), x½, … 

Changes to avoid non-differenciable expressions 

Changes to improve the convexity of the problem 

In addition, it is important an adequate adjustment of the precision, 
tolerances, number of steps, etc. of the optimization algorithm 



Scaling 

Scaling refers to the relative order of magnitude of the problem 
variables, which should not be very different in order to avoid 
numerical problems created by wide different sensibilities in different 
directions. 
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Example:  x1 takes values around 100 and  x2 around 0.1 
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It can be reformulated in terms of the new scaled variables u1, u2  

Now,  u1 and u2 both have values around 1 



Convexification 
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Non convex function in x 

Change of variables 

Convex function in v 

Range problem! 
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