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Unconstraint Optimization 
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Unconstraint optimization methods are 
important because: 

Some problems do not have constraints in 
their variables   

Allow an easy introduction of concepts that 
will be used in NLP problems 

Many optimization methods use unconstraint 
methods in a phase of its implementation 

Some NLP problems can be reformulated as 
unconstraint ones 



Outline 

 Examples 
 Theoretical solution 
 Optimizing a function of one variable 

– Newton type methods 
– Bracketing methods  
– Polynomial approximation methods 

 Multivariate methods 
– Gradient based algorithms 
– Newton type algorithms 
– Gradient free algorithms 

 Software 

There exist many 
methods. Only some of 
them will be 
considered in the 
course 



Redlich-Kwong’s equation  

Empirical relation among: 

Pressure P 

Temperature T 

Molar volume v 

of a real gas 
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a and b are unknown coefficients that must 
be estimated using experimental data 

Example: CO2 data 

volumen molar  v Temperatura T Presión       P 

500 273 33 

500 323 43 

600 373 45 

700 273 26 

600 323 37 

700 373 39 

400 272 38 

400 373 63,6 



Data fit as an optimization problem 
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(zi, yi) 

y = f(z,p) 

Given a function   y = f(z, p) that should fit a 
set of  N couples of data (zi , yi), estimate 
the unknown parameters p that provides the 
best fit 
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The problem can be formulated as the minimization of the sum of 
squares of the residuals  yi – f(zi,p) with respect to the function 
parameters p  
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500 273 33 

500 323 43 

600 373 45 

700 273 26 

600 323 37 

700 373 39 

400 272 38 

400 373 63,6 
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An unconstraint optimization 
problem 



We want to construct a tank like the one in the figure, whose base 
length is 3 times the base width. The material used to build the  
bottom cost 10€/m2 and the material used to build the sides is 
cheaper: 5€/m2 

If the tank must have a volume of 60 m3 determine the dimensions 
that will minimize the cost of building the tank. 

Building a open tank 

a 
b 

h 



An unconstraint optimization 
problem 

a = 3b 
b 

h 

Cost =  10(3b . b) + 5(2 (3bh + bh))  = 30b2 + 40 bh 
 
Volume = 3b . b .h  =  60      h = 20/b2 
 

 
Min  30b2  + 800/b 
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Extremum analytical conditions 
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In unconstraint optimization 
problems there exist a set of 
analytical conditions for a point 
being the solution 
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The hessian H determines the character of 
the possible optimum 

Necessary 
condition 
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Extremum analytical conditions 
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If H(x*) is PD or PSD,  J(x) presents a minimum in x* 

If H(x*) is ND o NSD,  J(x) presents a maximum in x* 

If H(x*) is non definite there is no extremum,  J(x) presents a saddle point in x* 

x* that satisfy the equation is called a stationary point 

2nd order 
approximation 



Extremum analytical conditions 
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The analytical solution of the 
problem usually is a non-
linear equation difficult to 
solve, hence, very often is 
better to use direct numerical 
methods to solve the 
optimization problem 



Single variable Optimization 
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There are important problems because: 

They are used in an intermediate step of other 
algorithms 

Many problems are single variable ones 

There exist several methods based on different criteria: 

a) Solving the analytical solution 

b) Minimizing the size of an interval containing the solution 

c) Approximating the function by a polynomial 

d) Other 

Assumption:  J(x) is unimodal and only have a local minimum 



Newton-Raphson’s method for solving 
non-linear equations f(x)=0 

f(x) 

xk+1 xk 

x 

J’(x) 

xk+1 xk 

x 

xk+2 

Each iteration corresponds 
to a linear approximation 

Aim 
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Newton’s method   (Newton-Raphson) 

The analytical solution is J’(x)=0 

How to solve this equation? 

We can apply the Newton’s method for 
solving non-linear equations f(z) = 0: 
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Starting from an initial value x0 one 
can generate a sequence x1, x2, .... 
of values that improve the solution 
until a stopping criterion is satisfied 



How many iterations? 

Ending criteria: 

| J’(xk) | < ε 

| xk+1 - xk | < ε 

| J(xk+1) – J(xk)| < ε 

k > N 
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The main difficulty is 
associated to the 
computation of the 
derivatives, which may be 
also a time consuming task. 

J’(x) 

xk+1 xk 

x 

xk+2 

J(x) 

xk+1 xk 

x 

xk+2 
xk+3 



Derivatives 

• If it is not possible to compute the derivatives 
analytically, they can be approximated by: 
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small 



Convergence 
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x* 

x2 x1 x3 x4 

x5 

We would say that the solution converges to x* when the 
sequence of values xk generated by the algorithm verifies: 
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From a certain k, so that the points xk are closer and closer to x*      
 c rate of convergence, p order of convergence 

x0 

x1 

x2 x3 

x4 

x5 
k 

x0 x* 



Newton’s method 
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J’(x) 

xk+1 xk 

x 

Advantages: 

Quadratic local convergence 

Inconveniences: 

First and second derivatives must be computed or estimated 

If J’’(x)  →0 it converges slowly 

If x0 is far away from x* the method may not converge 



Example  J(x) = x2 + 4 cos(x) 

Minimize J(x) 

J’(x*) =  

= 2x* - 4sen(x*) = 0 

Using a numerical 
method: 

x* = ± 1.895..   ,  0 
0

1
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3

4

5

6

-4 -3 -2 -1 0 1 2 3 4

x

J(
x)

x* 
2 minimums (local, global) and 
one maximum 

x* 



Minimize  J(x) = x2 + 4 cos(x) 

Minimize J(x) 
using Newton 

J’(x) = 2x-4sen(x) 

J’’(x) = 2 – 4cos(x) 
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Minimize  J(x) = x2 + 4 cos(x) 
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Example  J(x) = x2 + 4 cos(x) 
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It converges at different speeds and 
to different points depending on the 
initial guess Excel 

x* 

x0 = 3 

x0 = 1 



Bracketing methods 

J(x) 

x3 x1 x2 x4 

They generate a series of 
intervals of decreasing sizes 
[x1 , x2], [x3, x2],.... containing 
the optimum, until the required 
precision is met 

x* 2 steps: 

1. Find an initial interval containing x* 

2. Narrow the initial bracket until the required 
precision is met 



1 Initial (Semi)Bracket 

J(x) 

x1 x2 x* 
J(x) 

x1 x2 x* 

J(x) 

x1 x2 x* 

Choose any two points x1 < x2 

If J(x1) < J(x2) → x* < x2 

If J(x1) > J(x2) → x* > x1 

If J(x1) = J(x2) → x* ∈[ x1, x2] 



1 Initial Bracket 

J(x) 

x0 xk+1 x1 .... xk 

Knowing an initial semi-bracket 
p.e. [x0, ∞) containing x*, in 
order to find an initial bracket, 
one can generate the following 
sequence of points: 
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Comparing J(xk) until: 

J(xk-1) > J(xk) ≤ J(xk+1) 

The initial bracket is:  [xk-1 , xk+1] 

δ Positive or negative according to the semi bracket       
Good compromise precision/number of iterations 



2 Narrowing the bracket 

J(x) 

αk βk γ1 γ2 

If in iteration number k the 
bracket is: 

[αk , βk],  One can narrow its 
lenght Lk = βk - αk  evaluating J(x) 
in two points γ1 < γ2 inside the 
bracket 
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γγ=βα⇒γ=γ
γα=βα⇒γ<γ

βγ=βα⇒γ>γ

++
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++ How to choose the 
two internal points? 

Many methods: 
Fibonacci, ε-minimax, 
Golden section,…. 



2 Narrowing the bracket: ε-minimax 

J(x) 

αk βk γ1 γ2 

Criterion: minimize the length of 
the biggest of the two possible 
intervals resulting in the next step 

Min max { γ2 - αk, βk - γ1, γ2 - γ1} 

If    γ2 = γ1 + ε 

Min max{γ1 + ε - αk, βk - γ1} 
ε 

γ1 

γ1 + ε - αk 

αk - ε 

 βk - γ1 

 βk 

γ1 + ε - αk = βk - γ1 
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with respect to 
the centre of 
the interval 



2 Narrowing the bracket: ε-minimax 

J(x) 

αk βk γ1 γ2 

ε 

γ2 - αk = βk - γ1 
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ε should be chosen as small as possible in 
order to reduce the length of the next bracket 

In N steps: 
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Example  J(x) = x2 + 4 cos(x) 

Minimize J(x) 

initial bracket  [1,3] 

ε = 0.02 

First two intermediate 
points:   (3+1)/2 ± ε/2 

1,99, 2.01 
0
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5

6

-2 -1 0 1 2 3 4

x

J(
x)
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1,495 2,01 
Excel 

0

1

2

3

4

1 2 3 4 5 6 7

k

al
fa

, b
et

a



Golden section 

J(x) 

αk βk 
γ1 γ2 

ε 

The ε – minimax method 
computes the value of J(x) at two 
internal points but it does not 
uses this information in the 
following iteration 

The same problem can be stated 
adding the condition that one of 
the internal points, and hence its 
associated cost J(x), can be 
used in the following iteration: 
This is the idea behind the 
Golden section method 

αk βk γ1 γ2 

ε 

αk+1 βk+1 γ 



Golden section method 

αk βk γ1 γ2 

δ1 δ2 

αk+1 βk+1 
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Polynomial approximation methods 
(2nd order) 

J(x) 

αk βk γk 

If the value of J(x) is known at some 
points (for instance, 3 points) in the 
interval  [αk , βk] it is possible to 
compute a polynomial P(x) (of 
second order) passing trough these 
points and approximating J(x) in the 
interval.  

Then the analytical minimum of the 
approximating polynomial will 
provide a new point that will be used 
in reducing the length of the interval, 
but evaluating J(x) only once every 
iteration. 

P(x) = a + bx + cx2 

P(αk) = a + b αk + c αk 2 = J(αk) 

P(γk) =  a + b γk + c γk 2 = J(γk) 

P(βk) =  a + b βk + c βk
 2 = J(βk) 

µ 



Polynomial approximation methods 
(2nd order) 

P(x) = a + bx + cx2 

P(αk) = a + b αk + c αk 2 = J(αk) 

P(γk) =  a + b γk + c γk 2 = J(γk) 

P(βk) =  a + b βk + c βk
 2 = J(βk) 
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J(x) 

αk βk γk 

Mínimum of P(x) = a + bx + cx2 

µ = - b / (2c) ,  compute J(µ) and 
narrow the interval µ 

Set of 3 linear equations in a, b, c 
that can be solved: 



Polynomial approximation 
methods (2nd order) 

J(x) 

αk βk γk 

Mínimum of P(x) = a + bx + cx2 
µ = - b / (2c) ,  compute J(µ) and 
narrow the interval 

Any of the two possible intervals for the 
next step contains an interior point 
were J(x) is known and can be used in 
the new iteration. µ 

αk γk µ 

βk γk µ 

It is possible to use interpolating 
polynomials of different orders. For 
instance, a cubic interpolation using 
four points. 
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