Introduction to scheduling of batch processes

Prof. Cesar de Prada

ISA-UVA
prada@autom.uva.es

Outline

- Batch processes and batch plants
- Basic concepts of scheduling
- How to formulate scheduling problems
- Solution with optimization tools

Batch plants

- As the demand of high added value products of limited production (fine-chemicals, pharmaceuticals, food, certain polymers,....) is growing, the interest for batch plants in the process industry has increased
- In the same direction, the concept of multiproduct flexible production, where the equipment is re-used in order to manufacture different products according to a demand-driven scheme, has risen this interest.
- The use of batch processes requires a careful production planning and scheduling, that determines which products must be manufactured or processed, in which process units, in what order as well as the starting and ending times in each process unit.

Batch units

Operation

Load

Sequence of internal operation and stages in the unit
 Unload

Recipe for the operation

Basically, control problems

Operation of batch plants

When a firm operates with batch units, a key problem is to determine when each one should be started and unloaded and which products must process, so that a certain amount of products is manufactured satisfying constraints on energy, quality, storage space, etc, and optimizing some adequate criterion.

Single product manufacturing

Usually the manufacturing of a product implies several stages that take place in different batch process units according to a certain recipe.

Example:

In the example, manufacturing of product A cover four successive stages (each one in a different batch unit, lasting the indicated times)

Gantt diagram

Gantt diagram

Cycle Time

Time interval between the start of two consecutive cycles

Cycle Time

Another example. Notice the duration of stages 1 and 2
Processing times in the batch units:
$\mathrm{U} 1=2 \mathrm{~h}, \mathrm{U} 2=3 \mathrm{~h}, \mathrm{U} 3=2 \mathrm{~h}, \mathrm{U} 4=1 \mathrm{~h} \quad$ No product storage

Makespan: Total time required to produce a certain number of lots (example 2)

Multiple products manufacturing

Flowshop plant: Each product follows all stages in the same order (multiproduct plant)

J obshop plant: Not all products use all stages or follow the same sequence (multipurpose plants)

Multiproduct manufacturing

Each stage can have one or several batch units in parallel

Single unit or machine

Several units or machines in a Single-stage manufacture

Flow-shop with Parallel units and Multi-stage manufacturing

All products use all stages following the same sequence

Not all products use all stages or follow the same sequence

Example, two products

Campaign: manufacturing of a certain number of lots of the different products

Example: Campaign AABB

Types of Campaigns

Campaign cycle time 13 h
single product campaign SPC

Campaign cycle time 12h mixed product campaign MPC

Types of Campaigns

Generally speaking mix product campaigns are more efficient that single product ones, but this will depend on the cleaning times associated to the switching of products (changeovers)

Storage types

-Storage in the same unit: There are no intermediate storage tanks but the product can be kept in the same unit in which it was processed (NIS non-intermediate storage

- No waiting time: There is no intermediate product storage and, once finished, the product cannot be maintained in the unit (ZW zero wait)
-Unlimited Intermediate Storage: There exist intermediate storage tanks of unlimited capacity (UIS unlimited intermediate storage) or finite capacity (FIS Finite Intermediate Storage) (shared or not)

$$
\mathrm{t}_{\mathrm{c}}=\max _{\mathrm{j}=1, \mathrm{M}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{n}_{\mathrm{i}} \tau_{\mathrm{ij}} \quad \begin{aligned}
& \mathrm{n}_{\mathrm{i}} \text { \# of lots of } \\
& \text { product } \mathrm{i} M, \\
& \text { of stages }
\end{aligned}
$$

Example

Product	Stage 1	Stage 2	stage 3
A	6	4	3
B	3	2	2

Campaign ABAB

ZW Zero wait transfer

Example

Parallel units

Parallel units

Shared resources

Processing tasks require utilities such as steam, electricity, cooling water, etc. and manpower that are shared among the different process units.

Besides the efficient allocation of task to units to meet product demands, it is also necessary to consider that simultaneously executed tasks do not to utilize resources outside their availability limits

Planning and scheduling

Hierarchical decision making with different time scales, models and incertitude

Planning and Scheduling

Planning: Allocate production of different products to different facilities in each time period over a medium-term horizon to fulfil customer demand, taking into account capacity constraints, inventory and transportation costs with the aim of minimizing total cost.

Scheduling: Allocate resources (equipment, utilities, people) to competing tasks and the sequencing of tasks to units of a single facility over a short-term horizon, using more detailed information with the aim of minimizing makespan, tardiness, .. fulfilling production targets and constraints.

Logistics

Planning and scheduling

- Planning and Scheduling
- Strong industrial interest
- Room for optimization
- Components: Resources (equipment, utilities, people, materials,...), tasks (reactions, packing, cleaning, transportation,...) and time
- Problems:
- How to formulate the operation of the system as an optimization problem including logic and constraints
- How to solve efficiently the optimization problem
- How to interpret and implement the solution

Mathematical Programming

- Main decision variables (real or binary):
- Resources (units, utilities, people,...) to execute tasks at certain times
- Amount of materials processed in each task
- Inventory levels of materials over time
- Sequence of tasks
- Timing of tasks

Gantt diagram

Mathematical Programming

- Main constraints:
- Activities must proceed until completion
- Resources cannot exceed its availability
- Material balances
- Processing or storage capacity
- Satisfaction of order by its due date

Mathematical Programming

- Typical aims:
- time required to complete all tasks (makespan)
- number of tasks completed after their due dates
- plant throughput
- Tardiness , lateness
- profit
- costs

Time domain representation

Time slots: time intervals for allocation of tasks to units

Discrete time: Slots start and end at points of a fix discrete time grid

Continuous time: slots can be of any time length

Discrete time representation

Tasks

Interval $=0.5 \mathrm{hr}$

- Tasks are forced to last an integer number of discretization intervals
- Fix number of regular intervals of time.
- Events can only take place at these times.
- Balance between problem size (number of intervals) and approximation to reality
- Easier to formulate shared constraints

Integer variables $y_{i j}$ are used to represent if task i operates in slot j

Mathematical formulation

$\mathrm{ys}_{\mathrm{i} \text { ik }}=1$ if unit i starts at time k binary
$\mathrm{yd}_{\mathrm{ik}}=1$ if unit i descharges at time k binary $y_{i k}=1$ if unit i is operating at time k binary
F_{i} flow to unit i in operation
$4 h_{k+1}=4 h_{k}+S_{k}-\sum_{i=1}^{2} F_{i} y_{i k} \quad \forall \mathrm{k}$
$4 n_{k+1}=4 n_{k}-D_{k}+\sum_{i=1}^{2} p_{i} F_{i} y d_{i k} \quad \forall \mathrm{k}$
$p_{i} y s_{i k} \leq \sum_{j=0}^{p_{i}-1} y_{i, k+j} \quad \forall i \quad \forall k \quad y s_{i, k-p_{i}}=y d_{i, k}$
$\left(p_{i}-1\right)\left(1-y s_{i k}\right) \geq \sum_{j=1}^{p_{i}-1} y s_{i, k+j} \quad \forall i \quad \forall k$
p_{i} batch cycle of unit i
h_{k} level of supply tank at time k n_{k} level of discharge tank at time k
C_{i} cost per hour of operation of unit i

Solution

Supply

Solution with terminal constraints

Supply

Discharge tank level

Demand

Continuous time representation

\square

2.1 hr
1.5 hr
2.7 hr

- Tasks may last any duration

Time points associated to units

- Tasks linked to slots. Slots start or stop at any time.
- Number of time slots have to be defined previously
- Smaller number of time variables
- More difficult to deal with shared constraints
- Time instants t are new variables of the scheduling problem
- Events t_{j} can take place at any time. Its number has to be defined previously

Event representation

For flowshop problems

Time slots: Tasks must be assigned to each time slot

Predefined number of time points or slots How many?

General or inmediate precedence to order tasks over time

Two main types of problems

Flowshop
Allocation, sequencing, routing No recycling or splitting,mixing

Network problems

Multiproduct single stage scheduling

Minimum starting time (Release time)

Each of the n products must be processed in a unit and only in one

Unit 1

Unit 2

Unit L

L similar units that can perform the task, but, perhaps with different costs or processing times

Assigning and sequencing

Assign each product to a unit and compute processing order and execution time, so that the time constraints are satisfied and the processing costs are minimized

Assign
Sequence

Allocation MILP

$$
y_{\mathrm{im}}=\left\{\begin{array}{l}
1 \text { if product } \mathrm{i} \text { is assigned to unit } \mathrm{m} \\
0 \text { otherwise }
\end{array}\right.
$$

s.t. $\quad \mathrm{ts}_{\mathrm{i}} \geq \mathrm{r}_{\mathrm{i}}$

$$
\begin{array}{ll}
\mathrm{ts}_{\mathrm{i}}+\sum_{\mathrm{m} \in \mathrm{M}} \mathrm{p}_{\mathrm{im}} \mathrm{y}_{\mathrm{im}} \leq \mathrm{d}_{\mathrm{i}} \quad \forall \mathrm{i} \in \mathrm{I} & \\
\sum_{\mathrm{m} \in \mathrm{M}} \mathrm{y}_{\mathrm{im}}=1 \quad \forall \mathrm{i} \in \mathrm{I} & \text { Unit assigment } \\
\sum_{\mathrm{i} \in \mathrm{I}} \mathrm{y}_{\mathrm{im}} \mathrm{p}_{\mathrm{im}} \leq \max _{\mathrm{i}}\left\{\mathrm{~d}_{\mathrm{i}}\right\}-\min _{\mathrm{i}}\left\{\mathrm{r}_{\mathrm{i}}\right\} \quad \forall \mathrm{m} \in \mathrm{M} \\
\begin{array}{ll}
\mathrm{p}_{\mathrm{im}} & \begin{array}{l}
\text { Total processing } \\
\text { time in a unit } \mathrm{m}
\end{array}
\end{array}
\end{array}
$$

Cost

Start time t_{i}
r_{i} minimum starting time of product i
d_{i} maximum ending time of product i
$\mathrm{p}_{\text {im }}$ processing time of product i in unit m
$\mathrm{C}_{\text {im }}$ cost of processing product i in unit m
ts_{i} starting time of product i

Sequencing within every unit

$$
\begin{aligned}
& \mathrm{z}_{\mathrm{ij}}= \begin{cases}1 & \text { If product } \mathrm{i} \text { precedes product } \mathrm{j} \text { in unit } \mathrm{m} \\
0 & \text { Otherwise }\end{cases} \\
& \mathrm{y}_{\mathrm{im}}= \begin{cases}1 & \text { If product } \mathrm{i} \text { is assigned to unit } \mathrm{m} \\
0 & \text { Otherwise }\end{cases}
\end{aligned}
$$

If product i and product j are assigned to unit m, then i precedes j or j precedes i

$$
1 \geq \mathrm{z}_{\mathrm{ij}}+\mathrm{z}_{\mathrm{ji}} \geq \mathrm{y}_{\mathrm{im}}+\mathrm{y}_{\mathrm{jm}}-1 \forall \mathrm{i}, \mathrm{j} \in \mathrm{I}, \mathrm{i}>\mathrm{j}, \mathrm{~m} \in \mathrm{M}
$$

If product i precedes product j in unit m, then the start time of product j must be larger than the start time of product i plus task i duration

$$
\begin{array}{cr}
\mathrm{ts}_{\mathrm{j}} \geq \mathrm{ts}_{\mathrm{i}}+\sum_{\mathrm{m} \in \mathrm{M}} \mathrm{p}_{\mathrm{im}} \mathrm{y}_{\mathrm{im}}-\mathrm{M}\left(1-\mathrm{z}_{\mathrm{ij}}\right) \forall \mathrm{i}, \mathrm{j} \in \mathrm{I}, \mathrm{i} \neq \mathrm{j} & \text { Big-M Constraint } \\
\mathrm{y}_{\mathrm{im}}=\{0,1\}, \quad \mathrm{z}_{\mathrm{ij}}=\{0,1\}, \quad \mathrm{ts}_{\mathrm{i}} \geq 0 & \text { MILP problem }
\end{array}
$$

Optimal assignment of chemical products to batch reactors (single stage multiproduct, 7 products and 3 reactors).

Product	Minimum starting time	Due date	Cost in reactor 1	Cost in reactor 2	Cost in reactor 3	Processing time in reactor 1	Processing time in reactor 2	Processing time in reactor 3
A	1	8	3	2	4	2	3	
B	1	10	5	6	5	3	2	2
C	4	7	4	3	5	1	1	1
D	2	9	5	2	7	2	3	2
E	3	7	3	2	6	3	2	3
F	1	7	3	3	5	3	4	4
G	3	8	4	4	6	1	1	1

Find the assignment of products to reactors, and its sequencing, that fulfils time constraints and optimize processing costs

Optimal cost solution

Product	Minimum starting time	Due date	Cost in reactor 1	Cost in reactor 2	Cost in reactor 3	Processing time in reactor 1	Processing time in reactor 2	Processing time in reactor 3
A	1	8	3	2	4	2	3	
B	1	10	5	6	5	2	2	2
C	4	7	4	3	5	1	1	1
D	2	9	5	2	7	2	3	2
E	3	7	3	2	6	3	2	3
F	1	7	3	3	5	3	4	4
G	3	8	4	4	6	1	1	1

Optimal cost: 22

Reactor 1		F	G			A	B		
Reactor 2			E		C		D		
Reactor3									
	1	2	3	4	5	6	7	8	9

Gantt diagram

Related problems

min W

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{im}}, \mathrm{~W} \\
& \mathrm{~s}_{\mathrm{i}}+\sum_{\mathrm{m}} \mathrm{y}_{\mathrm{im}} \mathrm{p}_{\mathrm{im}} \leq \mathrm{W} \quad \mathrm{i} \in \mathrm{I} \\
& 0 \leq \mathrm{W} \leq \mathrm{W}_{\max }
\end{aligned}
$$

$$
\sum_{\mathrm{m} \square \mathrm{~F}_{\mathrm{i}}} \mathrm{y}_{\mathrm{im}}=1 \quad \mathrm{i} \in \mathrm{I}
$$

$$
\mathrm{y}_{\mathrm{im}}=0 \quad \mathrm{~m} \notin \mathrm{~F}_{\mathrm{i}}
$$

$$
\mathrm{y}_{\mathrm{i}_{1} \mathrm{~m}}+\mathrm{y}_{\mathrm{i}_{2} \mathrm{~m}} \leq 1 \quad \mathrm{i}_{1}, \mathrm{i}_{2} \in \mathrm{~N}
$$

$$
\mathrm{y}_{\mathrm{im}} \in\{0,1\}
$$

Different aim: minimize makespan W
Makespan is an upper bound for the end time of operation of each task

Each task i can be performed only in a subset F_{i} of M

Tasks $\mathbf{1}_{1}$ and i_{2} cannot be performed in the same equipment m

Minimum makespan problem

Product	Minimum starting time	Due date	Cost in reactor 1	Cost in reactor 2	Cost in reactor 3	Processing time in reactor 1	Processing time in reactor 2	Processing time in reactor 3
A	1	8	3	2	4	2	3	2
B	1	10	5	6	5	3	3	2
C	4	7	4	3	5	1	1	1
D	2	9	5	2	7	2	3	2
E	3	7	3	2	6	3	2	3
F	1	7	3	3	5	3	4	4
G	3	8	4	4	6	1	1	1

Optimal makespan: 6 h

Reactor 1	A		D	G					
Reactor 2		F			C				
Reactor3		B		E					
	1	2	3	4	5	6	7	8	

Gantt diagram

