PFC
Predictive Functional Control

Prof. Cesar de Prada
Dpt. of Systems Engineering and Automatic Control
University of Valladolid, Spain
prada@autom.uva.es
Outline

✔ As simple as possible
 – Motivation
 – PFC main ideas
 – An introductory example
Motivation

✓ Predictive control is a widely used control technique in the process industry combined with an optimization layer

✓ Most of the implementations use internal linear models (step responses) and LP optimizers
DMC

DMC no constraints
- Computes MVs
- Sets optimal MVs

LP, economic optimizer
- Set target

Past → **Future**
- Set point
- Output prediction

Time
- MV, OP
- CV, PV

SP
- u(t)
- t, t+1, t+2, ...
Motivation

- When a significant non-linear process is faced, a non-linear controller based on a non-linear plant model is required.
- Current approaches based on first-principles models, NN, volterra series, etc. lead to a non-linear optimization problem that must be solved on-line.
- This is a heavy burden, both from the implementation and computational load.
Non-linear Predictive Control

Optimizer

Predictor

Process

\[\min_{\Delta u} J = \sum_{j=1}^{N_2} \left[\hat{y}(t + j) - w(t + j) \right]^2 + \sum_{j=0}^{N_u-1} \left[\beta \Delta u(t + j) \right]^2 \]

\[\dot{x} = f(x(t), u(t)) \]

\[y(t) = g(x(t), u(t)) \]

\[y \leq y(t + j) \leq \bar{y} \]

\[_{\underline{u}} \leq u(t + j) \leq \bar{u} \]
Solving the dynamic NLP problem

Simulation from t to $t+N2$ for computing $J(u,x(t))$

Optimizer

Process

State constraints

Gradients
The aim of Parametric Predictive Control (PPC) is to facilitate the implementation of the controller while retaining the main non-linear characteristics in its internal model.

Good compromise between speed of execution, easy of implementation and performance.

Target: Embedded controller in a DCS.
PPC Main ideas

- Combines first principles models with MPC ideas and generates a simplified solution that is updated every sampling time.
- **Parametric Predictive Control (PPC)** (J. Richalet, 1996) was developed for, and successfully applied to, temperature control of batch reactors.
- A. Assandri, A. Rueda, PhD students
- Three steps:
 - Basic ideas presented in the **linear** case
 - Extended to the **non-linear** case with a chemical reactor CSTR
 - **Industrial application** to the bottom temperature control of a distillation column heated with a furnace-reboiler.
Basic concepts

Aim: Decrease the error in the future until a certain percentage of the current error $w - y(t)$

This implies to change the process output by Δp

Use the model to compute the control $u(t)$ that provides a change in the model output $\Delta m (u) = \Delta p$

Key design equation: $\Delta_m (u) = \Delta_p$
Basic concepts

The future error at \(t+N \) must be a fraction of the current error \(w - y(t) \)

\[
E_d = \lambda^N (w - y_p(t)) \quad 0 < \lambda < 1
\]

\[
\Delta_p = (1 - \lambda^N)(w - y_p(t))
\]

Example: First order model

\[
\tau \frac{dy(t)}{dt} + y(t) = ku(t)
\]
Basic concepts (Monoreg)

Example: First order model

\[\tau \frac{dy(t)}{dt} + y(t) = k u(t) \]

Assuming that \(u(t) \) is kept constant along the prediction horizon, that is \(N_u = 1 \), and with initial condition \(y_p(t) \):

- \(T_s \) sampling time
- \(N \) prediction (or coincidence) horizon

\[
\Delta y_m = \left(e^{-\frac{N T_s}{\tau}} - 1 \right) y_p(t) - k u(t) \left(e^{-\frac{N T_s}{\tau}} - 1 \right)
\]

\[
y_m(t + N T_s) = e^{-\frac{N T_s}{\tau}} y_p(t) + k u(t) \left(1 - e^{-\frac{N T_s}{\tau}} \right)
\]
Design equation

\[\Delta_p = (1 - \lambda^N)(w - y_p(t)) \]

\[\Delta y_m = \left(e^{-\frac{NT_s}{\tau}} - 1 \right)y_p(t) - k u(t) \left(e^{-\frac{NT_s}{\tau}} - 1 \right) \]

design equation: \(\Delta_m(u) = \Delta_p \)

Explicit solution for the control signal

\[u(t) = \frac{\left(e^{-\frac{NT_s}{\tau}} - 1 \right)y_p(t) - \left(1 - \lambda^N\right)\left[w(t) - y_p(t)\right]}{K \left(e^{-\frac{NT_s}{\tau}} - 1 \right)} \]
Tuning parameters

A discrete first order system with pole λ will give a free response as the one desired at $t+N\tau$

\[
\frac{1}{1-\lambda q^{-1}}
\]

N prediction horizon (number of sampling periods required to decrease the current error by λ^N)

λ Reduction factor ($0,..,1$)
Example. Ideal case

Model = Process

\[G(s) = \frac{1}{5s + 1} \]

\[K = 1 \]

\[\tau = 5 \text{ min.} \]

\[N = 20 \]

\[\lambda = 0.8 \]
Extension to $N_u > 1$

Example: First order model

$$\frac{dy(t)}{dt} = \frac{y(t)}{\tau} + k u(t)$$

$N_u = 2$

Predictions are more complex

$$y_m(t + T_s) = e^{\frac{-T_s}{\tau}} y_p(t) + k u(t) \left(1 - e^{\frac{-T_s}{\tau}} \right)$$

$$y_m(t + N T_s) = e^{\frac{-(N-1)T_s}{\tau}} y_m(t + T_s) + k u(t + T_s) \left(1 - e^{\frac{-(N-1)T_s}{\tau}} \right)$$

Two unknowns: $u(t)$, $u(t+T_s)$, then two coincidence points are required.
Robustness

10% change in the parameters

Model ≠ Process

Model:

\[G(s) = \frac{1}{5.5s + 1} \]

\[N = 20 \]

\[\lambda = 0.8 \]

A bit slower
Robustness

Model ≠ Process

Model:

$$G(s) = \frac{0.9}{5s + 1}$$

$$N = 20$$

$$\lambda = 0.8$$

Solution: error model or explicit integrator added
Incorporating errors

Model:

\[
\tau \frac{dy(t)}{dt} + y(t) = k u(t) + v
\]

\(v\) disturbance

Assuming also that \(v\) does not change along the prediction horizon:

\[
y(t + NT_s) = e^{-\frac{NT_s}{\tau}} y_p(t) + K u(t) \left(1 - e^{-\frac{NT_s}{\tau}}\right) + v \left(1 - e^{-\frac{NT_s}{\tau}}\right)
\]

\[
\Delta y_m = \left(e^{-\frac{NT_s}{\tau}} - 1\right) y_p(t) + K u(t) \left(1 - e^{-\frac{NT_s}{\tau}}\right) + v \left(1 - e^{-\frac{NT_s}{\tau}}\right)
\]
Design equation

\[\Delta_p = (1 - \lambda^N)(w - y_p(t)) \]

\[\Delta y_m = \left(e^{-\frac{NT_s}{\tau}} - 1 \right) y_p(t) + K u(t) \left(1 - e^{-\frac{NT_s}{\tau}} \right) + v \left(1 - e^{-\frac{NT_s}{\tau}} \right) \]

design equation: \(\Delta_m(u) = \Delta_p \)

Controller equation.

\(v \) is not known and needs to be estimated every sampling time
Estimating \(v \)

\(v \) is estimated from the process model in order to cancel the difference between the measured process output at time \(t \) and the prediction made with values at \(t - T_s \).

\[
y_p(t) = e^{-\frac{T_s}{\tau}} y_p(t - T_s) + Ku(t - T_s) \left(1 - e^{-\frac{T_s}{\tau}}\right) + v \left(1 - e^{-\frac{T_s}{\tau}}\right)
\]

\[
y_p(t) - e^{-\frac{T_s}{\tau}} y_p(t - T_s) - Ku(t - T_s) \left(1 - e^{-\frac{T_s}{\tau}}\right)
\]

\[
\hat{v} = \frac{y_p(t) - e^{-\frac{T_s}{\tau}} y_p(t - T_s) - Ku(t - T_s) \left(1 - e^{-\frac{T_s}{\tau}}\right)}{\left(1 - e^{-\frac{T_s}{\tau}}\right)}
\]
Example

The error estimation compensates the modelling errors

Model:

\[G(s) = \frac{0.9}{5.5s + 1} \]

Process:

\[N = 20 \]

\[\lambda = 0.8 \]
Adding an integrator

\[i(t) = \frac{k_p}{T_i} \int_{0}^{t} e(\tau) d\tau \]

\[i(t) = i(t - T_s) + \frac{T_s}{T_i} e(t - T_s) = i(t - T_s) + \frac{T_s}{T_i} (w(t - T_s) - y_p(t - T_s)) \]

\[u(t) = \frac{\left(e^{-\frac{N T_s}{\tau}} - 1 \right) y_p(t) - (1 - \lambda^N) \left[w(t) - y_p(t) \right] + i(t - T_s) + \frac{T_s}{T_i} e(t - T_s) }{K \left(e^{-\frac{N T_s}{\tau}} - 1 \right)} \]
Example

Model ≠ Process

Model:

\[G(s) = \frac{0.9}{5.5s + 1} \]

N = 20
λ = 0.8
\(T_i = 0.1 \text{ min} \)
\(T_s = 20 \text{ sec.} \)
First order + delay

Model:

\[\tau \frac{dy(t)}{dt} + y(t) = k u(t - d) + v \]

\(y(t) \) disturbance
\(d \) delay
\(d = DT_s \)

\[\Delta_p = (1 - \lambda^{N-D})[w(t) - y_p(t)] \]
First order + delay

\[\Delta_p = \left(1 - \lambda^{N-D}\right)[w(t) - y_p(t)] \]

\[\Delta y_m = \left(e^{-\frac{NT_s}{\tau}} - 1 \right) y_p(t) + e^{-\frac{NT_s}{\tau}} \sum_{m=t}^{t+D-1} u(m-D)e^{\frac{(m-t)T_s}{\tau}} + \]

\[+ u(t)K\left(1-e^{-\frac{(N-D)T_s}{\tau}}\right) + v\left(1-e^{-\frac{NT_s}{\tau}}\right) \quad N > D \]

\[u(t) = \left[K\left(1-e^{-\frac{(N-D)T_s}{\tau}}\right) \right]^{-1} \left\{ \left(1 - \lambda^{N-D}\right)[w(t) - y_p(t)] - \left(e^{-\frac{NT_s}{\tau}} - 1 \right)y_p(t) - \right. \]

\[\left. - e^{-\frac{NT_s}{\tau}} K\left(e^{\frac{T_s}{\tau}} - 1 \right) \sum_{m=t}^{t+D-1} u(m-D)e^{\frac{(m-t)T_s}{\tau}} - v\left(1-e^{-\frac{NT_s}{\tau}}\right) \right\} \]
Estimating v

v is estimated from the process model in order to cancel the difference between the measured process output at t and the prediction made with values at $t - T_s$.

$$\hat{v} = \frac{y_p(t - T_s) - K u(t - (D+1)T_s) \left(1 - e^{-\frac{T_s}{\tau}} \right)}{\left(1 - e^{-\frac{T_s}{\tau}} \right)}$$

+ smoothing filter
Example. Ideal case

Model =
Process

\[G(s) = \frac{e^{-10s}}{5s + 1} \]

- \(K = 1 \)
- \(\tau = 5 \text{ min.} \)
- \(d = 10 \text{ min.} \)
- \(N = 40 \)
- \(\lambda = 0.8 \)
- \(T_s = 1 \text{ min.} \)
Robustness

The error estimation compensates the modelling errors

Model:
\[G(s) = \frac{0.9e^{-9s}}{5.5s + 1} \]

\[N = 40 \]

\[\lambda = 0.8 \]