
Solution of partial differential 
equations (PDEs)

Prof. Cesar de Prada
ISA-UVA

prada@autom.uva.es



Outline

Models with Partial Differential Equations PDEs
Solving PDEs: converting PDEs into a set of 

DAEs
Finite differences
Weighted residuals

– Orthogonal collocation
– FEM
– ….

2



Distributed Parameter Systems
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Distributed parameter systems
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Modelling with finite volumes
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Modelling with finite volumes
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Modelling with finite volumes
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Adding diffusion
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Differential equations
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Boundary conditions
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Solution with Finite Volumes
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Solution with Finite Differences 

 The space z is discretized according to a regular mesh, and the 
derivatives with respect to space at the mesh nodes are 
approximated by interpolation using the values of the function 
in the surrounding nodes.
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Approximating derivatives
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Finite differences
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Finite differences
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Using macros with EcosimPro
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They allow for a compact writing of PDEs

The .el file should incorporate the  include declaration of the 
file where the macros are stored 

#include c:\ecosimpro\macros\macroscgm.h“

Different formats according to the order of the approximation 
and boundaries included:

PDE_1D_2der(0,1,N,T,Tx,Txx)
PDE_1D_EXTR_2der(0,1,N,T,Tx,Txx,TRUE,Tx1,TRUE,TxN)
….



Example
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#include "C:\programas\EcosimPro\MACROS\macros.h"

COMPONENT FourierCartes2(INTEGER N=50)
DATA

REAL L= 1..0 "length (m)"
DECLS

REAL T[N]
REAL Tx[N

REAL Txx[N]
REAL Tx1 "valor frontera inicial"

REAL TxN "valor frontera final"
INIT

FOR(i IN 2,N)
T[i]= 0.0

END FOR
CONTINUOUS

-- valores frontera
Tx1= 0.0
TxN= 1 - T[N]**4
-- calcula derivadas con respecto a x, la 
primera con
-- condiciones extremo impuestas, la segunda no
PDE_1D_EXTR_2der(0,1,N,T,Tx,Txx,TRUE,Tx1,TRUE,Tx
N)

EXPAND (i IN 1,N)
T[i]' = Txx[i]

END COMPONENT

Tx and Txx are 
substituted by the 
corresponding 
expressions of the FD 
discretization



Weighted residuals
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The weighted residuals approach assumes that, according to the 
Fourier series theorem, the solution of the PDE can be 
approximated by:
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Where the φi(z) are known (basis) functions normally chosen 
orthogonal among them and verifying the boundary conditions.
Substitution of the approximated solution in the PDE leads to the 
residual:

and the best choice of ai(t) is the one that minimizes the residuals

Time varying linear 
combination of  known 
spatial functions φi



Weighted residuals
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Given the spatial basis functions φi(z), the weighted residual 
family of methods, looks for the functions ai(t) that cancels a 
weighted integral of the residuals R over the considered spatial 
domain Ω. The weights are denoted as the functions Wi(z):

N,...2,1i0dz)t,z(R)z(Wi ==∫Ω

Depending on the choice of the Wi(z), different methods arise:
• Least squares
• Collocation
• Galerkin….

This (plus the boundaries) provides a set of ODEs that allows  
computing the ai functions



Weighted residuals
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0dz)t,z(R)z()z(W iii =φ⇒φ= ∫Ω
Galerkin

0)t,z(R)zz(W iii =⇒−δ= Collocation

The choice of the functions φi(z) is very important and can 
be defined locally (FEM) or globally  (spectral methods). 
Normally the spatial domain is discretized in a set of 
elements where the φi(z) are defined using simple 
functions to facilitate the computation.



Finite Element Method FEM
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FEM
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1-dimensional 
problems

2-dimensional 
mesh showing the 
elements

x

z

At a certain time t

z0 z1 z2 z3 z4

x

z
z0 z1 z2 z3 z4

φ1

φ2

φ3

The spatial profile of x 
can be obtained as a linear 
combination of the φi

Approximation of a 
variable over the mesh

x≈ a1φ1 + a2φ2+ a3φ3



Collocation methods
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x at a certain time instant

z1 zkz0 zNz3

A set of collocation 
points zi are placed on 
the spatial domain and 
the approximate 
solution is forced to 
coincide with the exact 
one at these points:
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ai(t) by integration 
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Collocation on finite elements

x

z

zk-1 zk zk+1 …

The spatial domain is divided in a mesh of K intervals 
or elements  (zk-1 , zk] of length ∆k = zk – zk-1

On every element or interval  (zk-1 , 
zk] the spatial functions φk are chosen 
as a polynomial formula. This 
provides a smooth approximation 
within the finite element.

There are many types of 
polynomials approximations
that can be used

The number K of 
elements  does not need 
to be large

Element k Element k+1

φk Polynomial
approximation
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The solution x in the element k at 
time t is approximated by a linear 
combination of known polynomials 
Pj(s) of order P.  Lagrange 
interpolation polynomials are often 
preferred
s normalized spatial z variable

The spatial domain is 
divided into K intervals 
or elements (zk-1 , zk] of 
length ∆k
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Element k Element k+1

At a certain 
time t

φi(z) = Pj(z(s))
ai (t) = xkj(t)
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Example Lagrange polynomial
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Example Lagrange polynomial
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Collocation points
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x The spatial domain is 
divided into K intervals 
or elements (zk-1 , zk] of 
length ∆k

zk-1 zk

Element k Element k+1

Collocation 
points

s = 0 s1  … sj s = 1

The same P+1 s-points used in the 
definition of the P(s) Lagrange 
polynomials are used as collocation 
points si within every element k
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Pj(si) = 0 for i ≠ j 

si < si+1
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Lagrange interpolation 
polynomials
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This provides an easy rule for substitution in the PDE of the proposed 
solution at the si collocation points of every k finite element
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Collocation on finite elements

The PDE equations are 
required to be satisfied at 
the collocation points si:

This provides a set of 
equations that allows 
computing the values of 
the unknown xki(t)

the P+1 collocation points are located at 
fixed positions sj in every element k.  
Different methods exist to choose them
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Orthogonal collocation

Equations are not enforced at s0 = 0. Instead, the continuity of the states 
through the elements and boundary conditions at s = 0 are used to generate 
the additional equations that allows computing all xki

x

z
s = 0 s1  … sj

Where should the 
collocation points si be 
placed in order to provide 
the most accurate 
estimation of x(z,t)?

xk1
xk2 xkj

s = 1

In order to 
reduce P, 
orthogonal
polynomials are 
chosen
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Orthogonal collocation
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Collocation points si, i = 1,…,P 
are selected as the roots of 
Gauss-Jacobi type polynomials, 
typically:

P s0 is always = 0

Legendre: better accuracy
Radau: better robustness
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Orthogonal collocation

x

z

The continuity of the state profiles is 
enforced over the finite elements (zk-1 , zk]

Simultaneous methods are 
adequate for unstable systems
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Note that dealing with control profiles, discontinuities can be allowed at 
the element boundaries if these conditions are not enforced on them
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Example: Heated pipe

Integrate over z = [0 2], from t =0 to 15

Select K = 4 finite elements of 
equal size ∆k = (2 – 0)/4 = 0.5
P = 3 ,  4 collocation points

T

zk-1 zk

s = 0 s1  … s2

xk1
xk2 xkP

s = 1

The Radau collocation points for P =3 are:
s0 = 0 s1 = 0.155051  s2 = 0.644949  s3 = 1
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The Radau collocation points for P =3 are:
s0 = 0 s1 = 0.155051  s2 = 0.644949  s3 = 1

Example
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Example
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Evaluating derivatives at si
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The Radau collocation points for P =3 are:
s0 = 0 s1 = 0.155051  s2 = 0.644949  s3 = 1

These terms can be pre-computed and are the 
same for all problems with P = 3
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Example

i = 1,2,3
k = 1,2,3,4

]1,0(sszz
)t(T)t,sz(T

k1k

kjkj1k

∈∆+=

=∆+

−

−

20)t,0(T20)0(T
cr

))t(TT(U2)t(T
s

)s(P
r
F

dt
)t(dT

kiki

e

kis
P

0j k

kjij
2

ki

==
ρ
−

+
∆∂

∂
π

−= ∑
=

20)t,0(T20)0,z(T
cr

))t,z(TT(U2
z

)t,z(T
r
F

t
)t,z(T

e

s
2

==
ρ
−

+
∂

∂
π

−=
∂

∂

Set of ODEs
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Example

T

z0 =0 z1

s = 0 s1  … s2

T11 T12

T13

s = 1
z2 =1

T10

20T)t,0(T

)t(T)1(P)t(T)t(T)t,z(T
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j1j1320
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Continuity and initial conditions 
provide the rest of the equations 
for solving the temperature at 
points Tkj. For other positions, one 
have to interpolate using:

Element 1 Element 2
…

]1,0(s

szz)t(T)s(P)t,z(T k1k
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kjj

∈

∆+=≈ −
=
∑



Heated pipe
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t = 0 t = 2

t = 4 t = 6

L = 2



Example: Heated pipe
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Length z

t = 15 s

Tkj coefficients



Heated pipe

42

Expanding the 
length to L = 20
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+ Diffusion

4343

i = 1,2,3
k = 1,2,3,4
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Ice cream crystallization
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Ice cream crystallization model based on population balance equations. 
It allows the determination of the crystal size distribution, giving information 
on granulometry which characterizes product quality. 

TTe

L

V

Crystals are formed 
spontaneously when the 
solution is under its 
saturation freezing 
temperature

Crystals growth at a rate that depends on the difference between the 
temperature T of the solution and its saturation freezing temperature Ts

Homogeneous 
mixture of 
crystals and 
syrup



Crystal size distribution
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TTe

L

V

L crystal size

Ψ(L,t) Cristal 
size distribution

V Volume
T(t) temperature
Ts freezing 
temperature
Te cooling wall 
temperature

The crystal size distribution function ψ(L,t) represents the number of 
crystals of size L per unit volume at time t. 

L

Ψ At time t



Population Balance Equation 
(PBE)
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The model takes into account the nucleation and growth kinetics. 
It allows the determination of the crystal size distribution Ψ(L,t).

Nucleation occurs at a rate N that depends on the difference between the 
temperature T of the solution and its saturation freezing temperature Ts 
creating N crystals of minimum size Lc per unit time and unit volume.

γ−β== )TT(G
dt
dL

s

)LL()TT(N cs −δ−α= ν

Crystal growth G, defined as the change in size of a crystal per unit 
time, is also depending on the difference between the temperature T of 
the solution and its saturation freezing temperature Ts 

δ Dirac Delta

Ts(c)  depends on the solute concentration of the solution c

L
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PBE

Dynamic mass balance applied to the change in the number of crystals 
of sizes between L and L+∆L. It assumes that the crystals grow size at a 
rate G per unit time, are formed by nucleation at a rate N per unit 
volume and no crystal agglomeration and breakage takes place.

LL - ∆L L + ∆L

At a growth rate G, crystals will grow ∆L in size in a time interval given 
by ∆L = G ∆t. So, crystals in the interval size [L - ∆L, L] will move to the 
interval size [L, L+ ∆L] and crystals that were in the interval [L, L+ ∆L] 
will move to the next interval [L+ ∆L, L+ 2∆L] . If the number of 
crystals of size L per unit volume is given by ψ(L,t), then the net balance 
due to crystal growth in the number of crystals with sizes in [L, L+ ∆L] 
in the time interval ∆t = ∆L/G  is: [ψ(L- ∆L,t) - ψ(L,t)]V 

L + 2∆L



PBE
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( )  )LL( N
L

))t,L(.G(
t

t,L
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∂
ψ∂

+
∂

∂ψ

[ ]  tV)LL( NtV
L

)t,L(.G)t,LL(GV)t,L()tt,L( c ∆−δ+∆





∆
ψ−∆−ψ

=ψ−∆+ψ

Dynamic mass balance applied to the change in the number of crystals of 
sizes between L and L+∆L. Considering the growth rate G and nucleation at 
a rate N;

fusione Q)TT(UA
dt

)T(dU),T(N),c,T(G +−=

If ∆t →0, ∆L →0 
PBE

The PBE has to be solved 
together with an energy 
balance equation , and 
solute concentration c

[ ] [ ]  tV)LL( NtV
L

G)t,L()t,LL(V)t,L()tt,L( c ∆−δ+∆




∆
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Moments method

49

Volumetric ice fraction

∫
∞
ψ=

00 dL)t,L(M number of particles

∫
∞
ψ=

01 dL)t,L(LM sum of characteristic lengths

∫
∞

ψ=
0

2
2 dL)t,L(LM ~ total area

∫
∞

ψ=
0

3
3 dL)t,L(LM ~ total volume

M1/Mo ~ mean crystal size M3/M2 ~ mean square weighted crystal size

3

3Lmaxor  

Lcor  0

M
6

dL
6
L)t,L(    )t( π

=
π

ψ=ϕ ∫
∞

It provides values of many characteristic variables of the crystal distribution 



Moments method
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Assuming that G is independent of  L, which is a sensible assumption, the 
PBE is multiplied by Lj and integrated (by parts) to obtain the moments.
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The solution of this 
set of ODEs provides 
the moments Mj



Method of characteristics
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z
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The method will be illustrated using the first order PDE:
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If x(z,t) is a solution 
of the PDE, then, at 
every (z,t), the vector 
(xz,xt,,-1) is normal to 
the surface x = x(z,t)

z
t

x

So, at every solution point, the vector [a,b,c] 
lies in a tangent plane to the solution surface:

a
dt

b
dz

c
dx

==



Method of characteristics
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ds
)t,z,x(a

)s(dt
)t,z,x(b

)s(dz
)t,z,x(c

)s(dx
===

With the solution parameterized 
by a parameter s

)t,z,x(c
ds

)s(dx

)t,z,x(b
ds

)s(dz

)t,z,x(a
ds

)s(dt

=

=

= The solution of this set of ODE will be 
equivalent to the solution of the PDE

The solutions x(s) are obtained along the 
characteristic curves z(s),t(s) for different 
values of the parameter s

The first order PDE becomes a set of ODEs 
over the characteristic curves t(s)

z(s)
Curves for 
different z(0)



Initial and boundary conditions
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A family of solutions for 
different initial z(0)  

Initial value of x 
depends on the 
chosen z

)t,z,x(c
ds

)s(dx

)t,z,x(b
ds

)s(dz

)t,z,x(a
ds

)s(dt

=

=

=

t(s)

z(s)
Below this 
characteristic curve, no 
solution is computed
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Example: Heated pipe

Integrate over z = [0 2], from t =0 to 15
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Example: Heated pipe
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