Mixed-Integer Programming

Prof. Cesar de Prada
ISA -UVA prada@autom.uva.es

Outline

> Hybrid problems
> Types of mixed integer problems
> Branch and Bound algorithm
> Examples
> Software

Hybrid problems

> Many decision problems, besides variables that can be represented by real numbers, involve other decisions of a discrete nature that can be represented naturally by integer or binary variables.
> On other occasions, the formulation of the problem involves not only quantitative models but rules or conditions that are better described by logical expressions.
The optimization problems that deal with these types of hybrid systems that involve real and integer variables are called mixed integer programming (MIP).
> If all the decision variables are integers, then the problem is classified as one of integer optimization

Example: Gang of burglars

Several burglars at work are in a store where there are N distinct objects. Each object j has a weight p_{j} and a value v_{j}. They have a van that can carry a maximum load P. Which objects should be selected by the burglars in order to maximize the benefit of the robbery?

The decision to be made on each object is to select it or not. A binary variables y_{j} can be used for this purpose

$$
\begin{aligned}
& \max _{\mathrm{y}} \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{j}} \mathrm{v}_{\mathrm{j}} \text { under } \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{j}} \mathrm{p}_{\mathrm{j}} \leq \mathrm{P} \\
& \mathrm{y}_{\mathrm{j}}=\left\{\begin{array}{l}
0 \text { object } \mathrm{j} \text { has not been selected } \\
1 \text { object } \mathrm{j} \text { has been selected }
\end{array}\right.
\end{aligned}
$$

ILP problem integer linear programming

Modelling logic with binary variables

Select one alternative and only one

$$
\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}}=1
$$

Select no more that one alternative

$$
\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{i}} \leq 1
$$

Select at least one alternative

$$
\sum_{i=1}^{N} y_{i} \geq 1
$$

Select alternative j if alternative i has been selected

$$
y_{i} \leq y_{j}
$$

Example: Salesman problem

A salesman must travel from his town to N others going back home without staying twice in any of them. He knows the distance between any two towns. Which is the best route in order to travel through a minimum distance?
The decision to be made is to travel from town ito town j or not. We can associate a binary variable y_{ij} to this decision for each couple of towns and denote as c_{ij} the distance between them

$\min _{\mathrm{y}} \quad \sum_{\mathrm{i}=1}^{\mathrm{N}} \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{c}_{\mathrm{ij}} \mathrm{y}_{\mathrm{ij}} \quad \mathrm{y}_{\mathrm{ij}}=\left\{\begin{array}{l}0 \text { the salesman does not travel from town } \mathrm{i} \text { to } \mathrm{j} \\ 1 \text { the salesman travels from town ito } \mathrm{j}\end{array} \quad \mathrm{y}_{\mathrm{ii}}=0\right.$
$\sum_{i=1}^{N} y_{i j}=1 \quad j=1, \ldots, N \quad$ he must arrive once and only once to town j
$\sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{y}_{\mathrm{ij}}=1 \quad \mathrm{i}=1, \ldots, \mathrm{~N} \quad$ he must depart once and only once from town i

Assigning tasks

In a workshop n people able to develop n tasks with different performances are working. The time required by each person to develop a given task is known. How the different tasks should be assigned to each person in order to minimize the time required to perform the n tasks?

Variables

i people
j tasks
t_{ij} time required by person ito finish task j
$y_{i j}$ binary variable, is 1 if the person i is assigned task j

Assigning tasks

$\min _{\mathrm{x}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{ij}} \mathrm{y}_{\mathrm{ij}}$
sujeto a
$\sum_{i=1}^{n} y_{i j}=1 \quad j=1, \ldots, n$
$\sum_{j=1}^{n} y_{i j}=1 \quad i=1, \ldots, n$
$y_{i j}$ binary

Total time required to complete the n tasks

Each person must have a task assigned and only one

Each task have to be assigned to one person and only to one

Types of mixed-integer problems

$$
\begin{cases}\min _{\mathbf{y}} \mathbf{c}^{\prime} \mathbf{y} & \\ \mathbf{A y}=\mathbf{b} & \text { ILP Integer } \\ \mathbf{y} \in \mathbf{Z} & \text { Linear }\end{cases}
$$

$\left\{\begin{array}{l}\min _{\mathbf{x}, \mathbf{y}} \mathbf{c}^{\prime} \mathbf{x}+\mathbf{d}^{\prime} \mathbf{y} \\ \mathbf{A x}=\mathbf{b} \quad \text { MILP Mixed-Integer } \\ \mathbf{E y}=\mathbf{e} \quad \text { Linear Programming } \\ \mathbf{0} \leq \mathbf{x} \in R^{n}, \mathbf{y} \in Z\end{array}\right.$

$$
\begin{cases}\min _{\mathbf{x}, \mathbf{y}} J(\mathbf{x}, \mathbf{y}) & \\ \mathbf{h}(\mathbf{x}, \mathbf{y})=\mathbf{0} & \text { MINLP Mixed- } \\ \mathbf{g}(\mathbf{x}, \mathbf{y}) \leq \mathbf{0} & \text { Integer Non-Linear } \\ \mathbf{x} \in R^{n}, \mathbf{y} \in Z & \end{cases}
$$

Slack variables can be used to transform problems with equalities into inequalities and vice versa, or min problems into max ones

Solution methods

> One possible approach consists of relaxing the integer variables into real ones, solving the corresponding NLP problem and then approximating the solution to the closest integer, usually leads to wrong solutions, except perhaps when a high number of values are admissible for each integer variable.
> Another method is to enumerate all possible combinations of integer variables, solving each of the associated NLP problems that results when the integer variables are given a fixed value and then choose the combination that provides a better cost function. Nevertheless, this is not a practical approach as the number of combinations grows exponentially with the number of integer variables.
> The most popular solution method is based on an intelligent selection of the integer combinations known as Branch and Bound (B\&B)
> There are many other approaches, most of them using a succession of two phases; the so called Primary and Master ones. These phases provide upper and lower bounds that narrow the gap progressively. Examples: Outer Approximation (OA), Generalised Benders Decomposition (GBD)

Branch and Bound (B\&B)

This method is based on an intelligent search of the optimum combining the choice of integer combinations with relaxations and the generation of lower and upper bounds of the cost function that leads to the solution.

It uses three main ideas:
\checkmark Relaxation, that covert integer into real variables and allows to compute bounds on the cost function.
\checkmark Branching, that generate alternatives of combinations of integer variables in the decision tree.
\checkmark Fathoming, examining the bounds allows to eliminate groups of integer combinations improving the search in this way.

Relaxation

A relaxation of an integer variable in a MILP or MINLP problem consists of allowing it to take any real value between its maximum and minimum range. For instance, a binary variable could take values within the interval $0 \leq y_{j} \leq 1$. So, in the relaxed problem, all variables, \mathbf{x} and \mathbf{y}, are real ones and the corresponding problem is LP or NLP.

Consequently, as the search space is widening, the solution of the relaxed problem is a lower bound (upper bound if the problem is a maximization one) of the original MILP or MINLP. The relaxation is made with the purpose of obtaining such a bound.

Branch and Bound (B\&B) algorithm

Example ILP (Himmelblau)

Max $J=86 y_{1}+4 y_{2}+40 y_{3}$ under
$774 y_{1}+76 y_{2}+42 y_{3} \leq 875$
$67 \mathrm{y}_{1}+27 \mathrm{y}_{2}+53 \mathrm{y}_{3} \leq 875$
$y 1, y 2, y 3 \in 0,1$

The relaxed problem is a LP one and its solution provides an upper bound Jr* of J^{\star} :

1
Relaxation

$$
\begin{gathered}
1 \quad 0 \leq y_{1} \leq 1 \\
0 \leq y_{2} \leq 1 \\
0 \leq y_{3} \leq 1 \\
y^{*}=(1,0.776,1) \\
J_{r}^{*}=129.1
\end{gathered}
$$

2 Branching

Then, the two possible integer options for $\mathrm{y}_{2,}$ (the only remaining real number in the solution) are examined

Branch and Bound (B\&B) algorithm

$$
\begin{aligned}
& \text { Max } \mathrm{J}=86 \mathrm{y}_{1}+4 \mathrm{y}_{2}+40 \mathrm{y}_{3} \\
& \text { under } \\
& 774 \mathrm{y}_{1}+76 \mathrm{y}_{2}+42 \mathrm{y}_{3} \leq 875 \\
& 67 \mathrm{y}_{1}+27 \mathrm{y}_{2}+53 \mathrm{y}_{3} \leq 875 \\
& \mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3 \in 0,1
\end{aligned}
$$

3 Relaxation

LP

Current best feasible solution (incumbent):
Lower bound of J*
$20 \leq y_{1} \leq 1$

$$
y_{2}=0
$$

$$
0 \leq y_{3} \leq 1
$$

$$
y^{\star}=(1,0,1)
$$

$J_{r}{ }^{*}=126.0$

No more branching is possible at node 2 . The $B \& B$ finish if the gap between the upper and lower bounds is less then a certain desired accuracy

$$
\frac{\operatorname{Cota}_{\text {sup }}-\operatorname{cota}_{\text {inf }} \mid}{1+\left|\operatorname{cota}_{\text {inf }}\right|} \leq t o l
$$

Prof. Cesar de Prada ISA-UVA

Upper bound for all solutions bellow
128.11 J* 126.0

Candidate solution.
Incumbent. No more branching is possible in this node. The J of the candidate is a lower bound for all branches.

B\&B

129.1 J*

Each feasible integer solution provides a lower bound of the problem

The values of the bounds can be
Each branching provides new upper bounds in the branch used to fathom branches without the need of computing its values

B\&B

\[

\]

129.1 J*

Incumbent
2 Branching
128.11

J* 126.0

$$
\longrightarrow \begin{gathered}
\mathrm{y}^{*}=(1,0,1) \\
\mathrm{J}_{\mathrm{r}}^{*}=126.0
\end{gathered}
$$

New integer feasible solution, but as the associated cost is lower than the lower bound, it can be discarded and the node

$$
\begin{array}{|c|}
\hline 3 \\
0 \leq y_{1} \leq 1 \\
y_{2}=1 \\
0 \leq y_{3} \leq 1 \\
y^{\star}=(0.978,1,1) \\
J_{r}^{*}=128.11
\end{array}
$$

$y_{1}=0$
Branching

Relaxation
No more branching is allowed in this node

Fathoming

B\&B

129.1

B\&B

Integer and binary variables

Any integer variable z taking values between 0 and n , can be substituted by a set of binary variables, that is variables that only take 0 or 1 values:

$$
\begin{aligned}
& z=y_{1}+2 y_{2}+3 y_{3}+\ldots .+n y_{n} \\
& 1 \geq y_{1}+y_{2}+y_{3}+\ldots .+y_{n} \\
& y=\{0,1\}
\end{aligned}
$$

Also $\quad z=2 y_{1}+2^{2} y_{2}+\ldots . .+2^{k} y_{k} \quad$ does the same with less integer variables

This can represent integers up to $2^{k+1}-1$
Then, mixed integer optimization problem can always be formulated in terms of binary variables

Example: Paint factory

A paint manufacturing facility has three production units with capacities given in the table bellow. The costs associated to the start up of the unit and to producing one Kg of paint are also given there. One production unit can be started either in the morning or in the afternoon, but, once started, must remain working at least for half a day (one period: morning or afternoon)

Unit	Start up cost $€$	Cost per Kg of paint produced $€$	Capacity, Kg/period
1	2800	5	1900
2	2000	3	1700
3	1900	8	2900

Paint factory

If one unit was started in the morning and continues operating in the afternoon, obviously, only generates starting up costs in the morning. All units are switched off at night, and the planning of the day operation is made daily in the morning according to the existing demand.

Assume that a certain day the factory must deliver 2500 kg of paint in the morning and 3500 kg in the afternoon. Which units should be used and when in order to reduce the cost as much as possible?

How much would change the cost if the demand in the afternoon were of 3600 Kg ?

Paint factory

Variables:

i unit number (1, 2, 3)
j working period: 1 morning 2 afternoon
$y_{i j}$ binary variable: equal to 1 if the unit i works in the period j
c_{i} start up costs of unit i
p_{i} production costs of a Kg of paint in unit i
w_{i} production of unit i in a period (= capacity)
D_{j} paint demand in the period j
z_{i} auxiliary binary variable, 1 if $\mathrm{y}_{\mathrm{i} 1}$ or $\mathrm{y}_{\mathrm{i} 2}$ are 1

Paint factory

$$
\begin{aligned}
& \min _{y_{i j}, z_{i}} \sum_{i=1}^{3} c_{i} z_{i}+p_{i} w_{i}\left(y_{i 1}+y_{i 2}\right) \\
& \sum_{i=1}^{3} w_{i} y_{i j} \geq D_{j} \quad j=1,2 \\
& z_{i} \geq y_{i j} \quad i=1,2,3 \quad j=1,2
\end{aligned}
$$

Variable z_{i} is 1 if unit i has been started up in the morning or in the afternoon

Other possible logic constraint: If we assume $\quad \sum_{i=1}^{3} y_{i 1} \leq 1$
that in the morning no more than a unit can

GAMS

sets i units / u1, u2, u3 /
j periods / m,t/
parameters costea(i) starting up cost of a unit
/ u1=2800, u2=2000, u3=1900 / demanda(j) demand per period $/ \mathrm{m}=2500, \mathrm{t}=3500 /$;
variables $y(i, j) \quad$ unit I works in period j
z(i) unit I start up that day coste total cost per day
binary variables y, z;

GAMS

equations produccion(j) production per period restriccion(i,j) constraints in z costetotal total cost;
produccion(j).. sum(i, $y(i, j) *$ capacidad(i)) $=g=$ demanda(j$)$; restriccion(i,j).. $z(i)=g=y(i, j)$; costetotal.. coste =e= sum(i,
costea(i)*z(i)+costeKg(i)*capacidad(i)*sum(j,y(i,j)));
model pinturas production planning / all /; solve pinturas minimizing coste using mip; display coste.I

Paint factory

Now production w_{i} of each unit is no longer equal to capacity C_{i} and we have to distinguish between morning and afternoon w_{ij}

$$
\begin{aligned}
& \min _{\mathrm{y}_{\mathrm{i} j}, \mathrm{z}_{\mathrm{i}}} \sum_{\mathrm{i}=1, \mathrm{j}=1}^{3,2} \mathrm{c}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}+\mathrm{p}_{\mathrm{i}} \mathrm{w}_{\mathrm{ij}} \\
& \mathrm{C}_{\mathrm{i}} \mathrm{y}_{\mathrm{ij}} \geq \mathrm{w}_{\mathrm{i} j} \geq 0 \quad \mathrm{i}=1,2,3 \quad \mathrm{j}=1,2 \\
& \sum_{\mathrm{i}=1}^{3} \mathrm{w}_{\mathrm{ij}} \mathrm{y}_{\mathrm{ij}} \geq \mathrm{D}_{\mathrm{j}} \quad \mathrm{j}=1,2 \\
& \mathrm{z}_{\mathrm{i}} \geq \mathrm{y}_{\mathrm{ij}} \quad \mathrm{i}=1,2,3 \quad \mathrm{j}=1,2
\end{aligned}
$$

Variable z_{i} is 1 if unit i has been started up in the morning or in the afternoon

Blending with discrete batch sizes

Mixing unit	Capacity kg/day
1	8000
2	10000

Raw materials required to manufacture one Kg of	A Kg	B Kg	C Kg	Profit $€ / \mathrm{Kg}$
Product p1	0.4	0.6	0	0.16
Product p2	0	0.3	0.7	0.2
Availability	∞	6000	∞	

Each unit works with batches of 2000 Kg

Which amounts of p1 and p2 should be manufactured in order to maximize profits?

Blending with discrete batch sizes

Variables:
$\mathrm{x}_{1} \mathrm{Kg}$ of p 1 manufactured per day
$x_{2} \mathrm{Kg}$ of p2 manufactured per day

$\max 0.16 \mathrm{x}_{1}+0.2 \mathrm{x}_{2}$
$0.6 x_{1}+0.3 x_{2} \leq 6000$
$x_{i}=2000 y_{i} \quad i=1,2$
$0 \leq \mathrm{y}_{1} \leq 4 \quad 0 \leq \mathrm{y}_{2} \leq 5$
$\mathrm{y}_{\mathrm{i}} \quad$ integer

Branch and Bound (B\&B) algorithm

$\max 0.16 \mathrm{x}_{1}+0.2 \mathrm{x}_{2}$
$0.6 \mathrm{x}_{1}+0.3 \mathrm{x}_{2} \leq 6000$
$\mathrm{x}_{\mathrm{i}}=2000 \mathrm{y}_{\mathrm{i}} \quad \mathrm{i}=1,2$
$0 \leq \mathrm{y}_{1} \leq 4 \quad 0 \leq \mathrm{y}_{2} \leq 5$
y_{i} integer

The relaxed problem is an LP one and its solution provides un upper bound Jr^{*} of J *:
J* ≤ 2800

Next, the two possible alternatives for y_{1}, the only real variable of the relaxed solution, will be examined

Branch and Bound (B\&B) algorithm

$$
\begin{aligned}
& \max \quad 0.16 \mathrm{x}_{1}+0.2 \mathrm{x}_{2} \\
& 0.6 \mathrm{x}_{1}+0.3 \mathrm{x}_{2} \leq 6000 \\
& \mathrm{x}_{\mathrm{i}}=2000 \mathrm{y}_{\mathrm{i}} \quad \mathrm{i}=1,2 \\
& 0 \leq \mathrm{y}_{1} \leq 4 \quad 0 \leq \mathrm{y}_{1} \leq 5
\end{aligned}
$$

y_{i} integer
3 Relaxation

LP	2
Current best feasible solution	$0 \leq y_{1} \leq 2$
	$0 \leq y_{2} \leq 5$
(incumbent): Lower bound of J*	$\rightarrow \mathrm{y}^{*}=(2,5) \mathrm{x}_{\mathrm{i}}$
	$\longrightarrow \mathrm{J}_{\mathrm{r}}{ }^{*}=2640$
	4 Fathoming

No more branching is possible at node 2. The B\&B finish if the gap between the upper and lower bounds is less then a certain desired accuracy

B\&B

2800
$\mathrm{~J}^{*}$
2640

Incumbent
No more branching is made in this node as a feasible solution of the MILP is found

Solving MINLP: Branch and bound

$\min J(x, y)$
x, y
$h(x, y)=0$
$\mathrm{g}(\mathrm{x}, \mathrm{y}) \leq 0$
$x \in X, \quad y \in\{0,1\}$

$\min _{x, y} J(x, y)$
$h(x, y)=0$
$\mathrm{g}(\mathrm{x}, \mathrm{y}) \leq 0$
$x \in X, \quad 0 \leq y_{i} \leq 1$

NLPs provides Lower bounds

Integer solutions in y provide Upper bounds

Super-structures

Turning off continuous variables

One can force the continuous variable q to have a value 0 or a positive one, as a function of a logic condition represented by a binary variable \mathbf{y} :
q continuous variable, e.g.. flow
L lower bound
U upper bound

Never use the

 product yq because this is a non-convex term$$
\begin{aligned}
& \mathrm{Ly} \leq \mathrm{q} \leq \mathrm{Uy} \\
& \text { if } \mathrm{y}=0 \quad 0 \leq \mathrm{q} \leq 0 \Rightarrow \mathrm{q}=0 \\
& \text { if } \mathrm{y}=1 \quad \mathrm{~L} \leq \mathrm{q} \leq \mathrm{U}
\end{aligned}
$$

Multiperiod

Activation of the operation of a unit i at time periods t $=1,2, \ldots$ T using the binary variable $y_{i t}$. The unit i can exists or not (using the binary variable z_{i}),

$$
\sum_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{y}_{\mathrm{it}} \leq \mathrm{Tz}_{\mathrm{i}} \quad \text { If } z_{\mathrm{i}}=0 \text { then all } \mathrm{y}_{\mathrm{it}} \text { are zero }
$$

but

$$
y_{i t} \leq z_{i} \quad t=1,2, \ldots . T \quad \begin{aligned}
& \text { Is an equivalent, and } \\
& \text { usually tighter, alternative }
\end{aligned}
$$

Turning constraints on/off

Activation and deactivation of constraints associated to a stream or process unit
constraints $h(x)=0 \quad g(x) \leq 0$
slack var iables s, v
$h(x)+s-v=0$
$\mathrm{s}+\mathrm{v} \leq \mathrm{U}_{1}(1-\mathrm{y}) \quad \mathrm{U}$, large number
$g(x)-U_{2}(1-y) \leq 0$
$s \geq 0, v \geq 0$
if $\mathrm{y}=0$ then $\mathrm{h}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are not constrained
if $y=1$ then $s=0, v=0, h(x)=0, g(x) \leq 0$

Switching constraints

The first or second constraint is activated as a function of the value of a binary variable y

Either $\quad g_{1}(x) \leq 0, \quad$ or $\quad g_{2}(x) \leq 0$
$\mathrm{g}_{1}(\mathrm{x})-\mathrm{U}(1-\mathrm{y}) \leq 0$
$\mathrm{g}_{2}(\mathrm{x})-\mathrm{Uy} \leq 0$
if $\quad y=0$ then $g_{1}(x) \leq U, g_{2}(x) \leq 0$
if $\quad y=1$ then $\quad g_{1}(x) \leq 0, \quad g_{2}(x) \leq U$
U large upper limit $\quad \mathrm{Big} \mathrm{M}$

Conditional constraints

The second constraint is activated as a function of the value of the first one

$$
\begin{aligned}
& \text { If } \quad g_{1}(x) \leq 0 \text {, then } \quad g_{2}(x) \leq 0 \\
& y_{1}, y_{2} \text { associated with } P_{1} \Rightarrow P_{2} \\
& y_{1} \leq y_{2} \\
& -M_{1} y_{1} \leq g_{1}(x) \leq M_{1}\left(1-y_{1}\right) \\
& -M_{2} y_{2} \leq g_{2}(x) \leq M_{2}\left(1-y_{2}\right) \\
& \text { if } \quad y_{1}=0 \text { then } \quad g_{1}(x) \leq M_{1}, y_{2}, g_{2}(x) \text { any value } \\
& \text { if } \quad y_{1}=1 \text { then } \quad g_{1}(x) \leq 0, \quad y_{2}=1, \quad g_{2}(x) \leq 0
\end{aligned}
$$

Process synthesis

A product C can be manufactured (Process I) from other B that can be purchased on the market or manufactured from product A in two different and excluding ways (Processes II and III). Represent the different alternatives and find the best way of producing it.

Process synthesis

Conversions:
Process I: \quad C $=0.9 B$
Process II: $\quad B=\ln (1+A)$
Process III: $B=1.2 \ln (1+A)$

Maximum capacity

Process I: 2 ton/h of C
Process II: 4 ton/h of B
Process III: 5 ton/h of B

Price	Costs		
A: 1.800 €/ton		Fixed ($10^{3} € / \mathrm{h}$)	Variable ($10^{3} € /$ ton $)$
B: 7.000 €/ton	Process I:	3.5	2
C: 13.000 €/ton	Process II:	1	1
	Process III	1.5	1.2

Process synthesis (Superstructure)

$\max P R=13 \mathrm{C}-1.8 \mathrm{~A}_{2}-1.8 \mathrm{~A}_{3}-7 \mathrm{~B}_{1}-3.5-2 \mathrm{C}-1.0 \mathrm{y}_{2}-1 \mathrm{~B}_{2}-1.5 \mathrm{y}_{3}-1.2 \mathrm{~B}_{3}$
s.a.

Balances | PI: $\mathrm{C}-0.9\left(\mathrm{~B}_{1}+\mathrm{B}_{2}+\mathrm{B}_{3}\right)=0$ |
| :--- |
| PII: $\mathrm{B}_{2}-\ln \left(1+A_{2}\right)=0$ |
| PIII: $B_{3}-1.2 \ln \left(1+A_{3}\right)=0$ |
| $B_{t}=B_{2}+B_{3}+B_{1}$ |

$$
\begin{gathered}
\mathrm{B}_{2} \leq 4 \mathrm{y}_{2} \\
\mathrm{~B}_{3} \leq 5 \mathrm{y}_{3} \\
\mathrm{~B}_{1} \leq 2 y_{1} \\
C \leq 2
\end{gathered}
$$

$$
\mathrm{B}_{3} \leq 5 \mathrm{y}_{3} \quad \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}=0,1
$$

GAMS

Positive Variables

a2 materia prima para el proceso 2
a3 materia prima para el proceso 3
b2 produccion de producto B en el proceso 2
b3 produccion de producto B en el proceso 3
b1 cantidad de producto B que se puede adquirir en el mercado
bt cantidad de producto B que se consume en el proceso 1
c1 capacidad de produccion del producto c en el proceso 1 ;

Binary Variables

y1 existencia de compra exterior de B
y2 existencia del proceso 2
y3 existencia del proceso 3 ;
Variable
bene beneficio total en millones de \$ por ano;

GAMS

-las restricciones inout2 e inout3 se han convexificado
inout1.. c1 =e= 0.9*bt ;
inout2.. $\exp (\mathrm{b} 2)-1=e=\mathrm{a} 2$;
inout3.. $\exp (b 3 / 1.2)-1=e=a 3$;
mbalb.. $b t=e=b 2+b 3+b 1$;
log1.. c1 = L= 2 ;
log2.. $\mathrm{b} 2=\mathrm{L}=4^{\star} \mathrm{y} 2$;
log3.. b3 = L= 5*y3;
log4.. $\mathrm{B} 1=\mathrm{L}=2 * \mathrm{y} 1$
Rest.. $y_{2}+y_{3}=L=1$
coste.. bene $=\mathrm{E}=13^{*} \mathrm{c} 1-1.8^{*} \mathrm{a} 2-1.8^{*} \mathrm{a} 3-7 * \mathrm{~b} 1-3.5-2^{*} \mathrm{c} 1-\mathrm{y} 2-\mathrm{b} 2-1.5^{*} \mathrm{y} 3$

- 1.2*b3;

GAMS

Modelling propositional logic expressions

$P_{i} \quad$ expression or logic variable with values false/true (0/1)

A logic proposition is a set of logic expressions linked by the logic operators:
\wedge intersection \vee union
$\overline{\mathrm{P}}$ negation $\quad \oplus$ exclusive or

The implication $P_{1} \Rightarrow P_{2}$ is equivalent to $P_{1} \vee P_{2}$
The logic expressions can be formulated as equations associating P (true / false) with y (1/0), and (no P) with 1-y

Logic operators

conjunction

AND	1	0
1	1	0
0	0	0

NOT	1	0
	0	1

disjunction

OR	1	0
1	1	1
0	1	0

EOR \oplus	1	0
1	0	1
0	1	0

Morgan
Laws
$\overline{(\mathrm{A}+\mathrm{B})}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$
$\overline{\mathrm{A} . \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$

Logic expressions / equations

$P_{1} \vee P_{2} \vee P_{3} \quad y_{1}+y_{2}+y_{3} \geq 1$
$\mathrm{P}_{1} \wedge \mathrm{P}_{2} \wedge \mathrm{P}_{3} \quad \mathrm{y}_{1} \geq 1, \quad \mathrm{y}_{2} \geq 1, \quad \mathrm{y}_{3} \geq 1$
$P_{1} \Rightarrow P_{2} \quad 1-y_{1}+y_{2} \geq 1$ ór $y_{1} \leq y_{2}$
P_{1} if and only if $P_{2} \quad y_{1}=y_{2}$
one among $P_{1}, P_{2}, P_{3} \quad y_{1}+y_{2}+y_{3}=1$
$\mathrm{P}_{1} \vee \mathrm{P}_{2} \Rightarrow \mathrm{P}_{3} \quad \mathrm{y}_{1} \leq \mathrm{y}_{3} \quad \mathrm{y}_{2} \leq \mathrm{y}_{3}$
Using these equivalences, it is possible to convert any logic expression P to an associated set of equations in the binary variables y, if the logic expression is written in its normal conjunctive form

normal conjunctive form

$$
\mathrm{Q}_{1} \wedge \mathrm{Q}_{2} \wedge \cdots \wedge \mathrm{Q}_{\mathrm{n}}
$$

Where Q_{i} are logic expressions written as disjunctions
In order to transform any logic expression to this format:
1 Replace the implication by its equivalent expression

$$
\mathrm{P}_{1} \Rightarrow \mathrm{P}_{2} \Leftrightarrow \overline{\mathrm{P}_{1}} \vee \mathrm{P}_{2}
$$

2 Apply the Morgan's laws to move inside the negations

$$
\overline{\left(\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right)} \Leftrightarrow \overline{\mathrm{P}_{1}} \vee \overline{\mathrm{P}_{2}} \quad \overline{\left(\mathrm{P}_{1} \vee \mathrm{P}_{2}\right)} \Leftrightarrow \overline{\mathrm{P}_{1}} \wedge \overline{\mathrm{P}_{2}}
$$

3 Use the distributive property to arrive to normal conjunctive form

$$
\left(\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right) \vee \mathrm{P}_{3} \Leftrightarrow\left(\mathrm{P}_{1} \vee \mathrm{P}_{3}\right) \wedge\left(\mathrm{P}_{2} \vee \mathrm{P}_{3}\right)
$$

Example

$$
\left(\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right) \vee \mathrm{P}_{3} \Rightarrow\left(\mathrm{P}_{4} \vee \mathrm{P}_{5}\right)
$$

Step 1

$$
\left[\left(\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right) \vee \mathrm{P}_{3}\right] \vee\left(\mathrm{P}_{4} \vee \mathrm{P}_{5}\right)
$$

Step 2

$$
\left[\left(\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right) \wedge \overline{\mathrm{P}_{3}}\right] \vee\left(\mathrm{P}_{4} \vee \mathrm{P}_{5}\right)=\left[\left(\overline{\mathrm{P}_{1}} \vee \overline{\mathrm{P}_{2}}\right) \wedge \overline{\mathrm{P}_{3}}\right] \vee\left(\mathrm{P}_{4} \vee \mathrm{P}_{5}\right)
$$

Step 3

$$
\begin{aligned}
& {\left[\left(\overline{P_{1}} \vee \overline{P_{2}}\right) \vee\left(P_{4} \vee P_{5}\right)\right] \wedge\left[\overline{P_{3}} \vee\left(P_{4} \vee P_{5}\right)\right]} \\
& {\left[\bar{P}_{1} \vee \overline{P_{2}} \vee P_{4} \vee P_{5}\right] \wedge\left[\bar{P}_{3} \vee P_{4} \vee P_{5}\right]}
\end{aligned}
$$

Example

$$
\begin{aligned}
& {\left[\overline{\mathrm{P}_{1}} \vee \overline{\mathrm{P}_{2}} \vee \mathrm{P}_{4} \vee \mathrm{P}_{5}\right] \wedge\left[\overline{\mathrm{P}_{3}} \vee \mathrm{P}_{4} \vee \mathrm{P}_{5}\right]} \\
& \mathrm{Q}_{1} \wedge \mathrm{Q}_{2} \\
& \mathrm{Q}_{1}=\overline{\mathrm{P}_{1}} \vee \overline{\mathrm{P}_{2}} \vee \mathrm{P}_{4} \vee \mathrm{P}_{5} \rightarrow 1-\mathrm{y}_{1}+1-\mathrm{y}_{2}+\mathrm{y}_{4}+\mathrm{y}_{5} \geq 1 \\
& \mathrm{Q}_{2}=\overline{\mathrm{P}_{3}} \vee \mathrm{P}_{4} \vee \mathrm{P}_{5} \rightarrow 1-\mathrm{y}_{3}+\mathrm{y}_{4}+\mathrm{y}_{5} \geq 1
\end{aligned}
$$

Then $\mathrm{Q}_{1} \wedge \mathrm{Q}_{2}$ is equivalent to

$$
\begin{aligned}
& \mathrm{y}_{1}+\mathrm{y}_{2}-\mathrm{y}_{4}-\mathrm{y}_{5} \leq 1 \quad\left(\mathrm{P}_{1} \wedge \mathrm{P}_{2}\right) \vee \mathrm{P}_{3} \Rightarrow\left(\mathrm{P}_{4} \vee \mathrm{P}_{5}\right) \\
& -\mathrm{y}_{3}+\mathrm{y}_{4}+\mathrm{y}_{5} \geq 0
\end{aligned}
$$

Acetone production

(Raman \& Grossmann, CACHE)

One wishes to select the best way to produce acetone $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ from alcohol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ and methane $\left(\mathrm{CH}_{4}\right)$. There are different pathways to obtain acetone that are listed next, for which the appropriate catalyser is available as well as the intermediate inorganic compounds, with the exception of CrO_{3} y O_{3}. Formulate the feasibility of the chemical reactions in mathematical form.
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \xrightarrow{\mathrm{NaOC}_{2} \mathrm{H}_{5} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}} \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$
$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CO}_{2}$
$\mathrm{CH}_{3} \mathrm{CN}+\mathrm{CH}_{3} \mathrm{MgI} \xrightarrow{\mathrm{Et}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{NMgI}^{2} \mathrm{CH}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{O} / \mathrm{HCl}} \mathrm{CH}_{3} \mathrm{COCH}_{3}\right.$

Acetone production

(Raman \& Grossmann, CACHE)

$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{MgI} \xrightarrow{\mathrm{Et}_{2} \mathrm{O}_{3} \mathrm{O}^{+}} \mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$
$\mathrm{CH}_{3} \mathrm{CHOHCH}_{3} \xrightarrow{\mathrm{CrO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{COCH}_{3}$
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \xrightarrow{\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}_{2}} \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{HCO}_{2} \mathrm{H}$
$\mathrm{CH}_{3} \mathrm{I} \xrightarrow{\mathrm{Mg} / \mathrm{Er}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{MgI} \xrightarrow{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH} \rightarrow \mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$
$\mathrm{CH}_{4}+\mathrm{I}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{I}+\mathrm{HI}$
$\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{O}_{2} \xrightarrow{\mathrm{Cr}_{2} \mathrm{O}_{3} / \mathrm{Cu}} \mathrm{CH}_{3} \mathrm{CHO}$
$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{NaCN} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NaCl}+\mathrm{CH}_{3} \mathrm{CN}$
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}$

Acetone production

(Raman \& Grossmann, CACHE)

Formulation

Among all those chemical reactions, one must select those that allow synthesizing acetone from the given row materials and catalysers.

In order to formulate a mathematical optimization problem, we will express all chemical reactions as propositional logic expressions using the operators:

$$
\vee(\mathrm{OR}), \wedge \text { (and) } \Rightarrow \text { (implication), } \mathrm{y} \neg \text { (negation) }
$$

$$
A+B \rightarrow C+D \quad A \wedge B \Rightarrow C \wedge D
$$

I.

They can be formulated as

$$
A \wedge M \Rightarrow B
$$

Acetone production (Raman \& Grossmann, CACHE)

Next, we will formulate these logic propositions in normal conjunctive form following these steps:

1. Remove implications

Example

$$
\mathrm{A} \Rightarrow \mathrm{~B} \text { is equivalent to } \neg \mathrm{A} \vee \mathrm{~B}
$$

2. Displace negations inside

$$
\begin{aligned}
& \neg(A \wedge B) \Leftrightarrow(\neg A) \vee(\neg B) \\
& \neg(A \vee B) \Leftrightarrow(\neg A) \wedge(\neg B)
\end{aligned}
$$

$$
\begin{aligned}
& A \wedge B \Rightarrow C \wedge D \\
& \neg(A \wedge B) \vee(C \wedge D) \\
& \neg A \vee \neg B \vee(C \wedge D) \\
& (\neg A \vee \neg B \vee C) \wedge(\neg A \vee \neg B \vee D)
\end{aligned}
$$

3. Use the distributive property

$$
(A \wedge B) \vee C \Leftrightarrow(A \vee C) \wedge(B \vee C)
$$

Acetone production

(Raman \& Grossmann, CACHE)

Then, each component of the conjunction can be converted into a equation by assigning a binary variable y to every of its variables or $1-\mathrm{y}$ if it is affected by a negation, and using the translation of the operators

$$
\begin{gathered}
(\neg A \vee \neg B \vee C) \wedge(\neg A \vee \neg B \vee D) \\
1-y_{A}+1-y_{B}+y_{C} \geq 1 \\
1-y_{A}+1-y_{B}+y_{D} \geq 1 \\
y_{A}+y_{B}-y_{C} \leq 1 \\
y_{A}+y_{B}-y_{D} \leq 1
\end{gathered}
$$

Acetone production

 (Raman \& Grossmann, CACHE)
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}$

```
CH3
\neg ( \mathrm { CH } _ { 3 } \mathrm { CHO } \wedge \mathrm { O } _ { 2 } ) \vee \mathrm { CH } _ { 3 } \mathrm { COOH }
(\negCH3
(\negC\mp@subsup{\textrm{CH}}{3}{}\textrm{CHO}\vee\mp@subsup{\textrm{CH}}{3}{}\textrm{COOH})\wedge(\neg\mp@subsup{\textrm{O}}{2}{}\vee\mp@subsup{\textrm{CH}}{3}{}\textrm{COOH})
```

$1-y_{1}+y_{3} \geq 1$
$1-y_{2}+y_{3} \geq 1$

$$
\begin{aligned}
& \mathrm{y}_{1}-\mathrm{y}_{3} \leq 0 \\
& \mathrm{y}_{2}-\mathrm{y}_{3} \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=\mathrm{CH}_{3} \mathrm{CHO} \\
& y_{2}=\mathrm{O}_{2} \\
& y_{3}=\mathrm{CH}_{3} \mathrm{COOH}
\end{aligned}
$$

The optimization problem can be formulated as minimizing a cost under the set of constraints

A dynamic problem: batch reactor

$$
\begin{aligned}
& \text { An endothermic batch reactor operates for } \\
& \text { one hour periods, with a load } \mathrm{A} \text { according to } \\
& \text { the parallel reactions } \mathrm{A} \rightarrow \mathrm{~B} \text { and } \mathrm{A} \rightarrow \mathrm{C}, \\
& \text { but only the } \mathrm{B} \text { product has commercial } \\
& \text { value. The speeds of reaction are given by: }
\end{aligned}
$$

Find the temperature profile that maximizes the final production of B, if the temperature must always be bellow $139{ }^{\circ} \mathrm{C}$

Dynamic Optimization (DO)

Decision variables parameterization

Sequential solution using simulation

$$
\begin{aligned}
& \min _{u} \mathrm{~J}(x, u) \\
& \dot{x}(t)=f(x(t), u(t)) \quad y(\mathrm{t})=\mathrm{g}(\mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}) \\
& \underline{y} \leq y(t) \leq \bar{y} \quad \underline{u} \leq u(t) \leq \bar{u}
\end{aligned}
$$

Path constraints on x / penalty functions

