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Introduction 

 In most of the practical problems, the decision 
variables can not be chosen freely, but they must 
complain with a set of constraints expressed as 
equality or inequality equations. 

 When the cost function and the constraint equations 
are linear in the decision variables, the optimization 
problem is called linear programming (LP) 

 The term mathematical programming is related to 
the techniques developed during the II World War 
with the purpose of optimizing the planning 
(programming) of flights of military planes. 
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Example 

m2 of silk S 

benefit 6 €/m2 

m2 of cotton A 

 benefit 4€/m2 

M1 

M2 

M3 

Silk 2h 
Cotton 4h 

48h 

60h 

42h 

availability in h per week of every 
machine (h) 

Processing 
time of every 
m2 (h) How many m2 of 

each type must be 
manufactured weekly 
in order to achieve 
the maximum 
benefit? 

Silk 4h 
Cotton 2h 

Silk 3h 

x1 m2 of silk per week 

x2 m2 of cotton per 
week 

Mi Machine i 

Factory 

Every m2 of silk need 
to be processed in 
M!, M2, M3. The 
same with cotton in 
M1, M2 
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Example 
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Processing 
time of every 
m2 (h) 

availability in h per week of every 
machine (h) 

m2 of silk S 

benefit 6 €/m2 

m2 of cotton A 

 benefit 4€/m2 

M1 

M2 

M3 

Silk 2h 
Cotton 4h 

48h 

60h 

42h 

Silk 4h 
Cotton 2h 

Silk 3h 
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LP Problems 
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The same LP problem can be 
formulated in several 
equivalent formats 0

min

≥
≤

x
bAx

xc'
x

0

max

≥
=

x
bAx

xc'
x

0

max

≥
≥

x
bAx

xc'
x

… 

Standard 
format 
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LP transformations 

Maximize / minimize )(minmax xc'xc'
xx

−=

Inequalities 753753 2121 −≥−−⇒≤+ xxxx

Equalities / 
Inequalities 




≥ε
=ε++

⇒≤+
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≥ε
≤ε−+

⇒=+
0
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753 21

21

xx
xx

A new 
(slack) 
variable  εis 
added 

Unconstraint 
variable 

0x,0xxxxx 323211 >>−=⇒
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LP Transformations 
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60
48
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00142

5

4
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x
x
x
x
x

⇒ 

The original problem is converted into 
standard form increasing the number of 
decision variables with the three slack 
variables x3, x4, x5 

0b0x
bAx

xc'
x

≥≥
=

,

max
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LP Transformations 

000int unconstra
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Geometric solutions 

x1 

x2 

14 

x1=14 

2x1+4x2=48 Región 
factible 

4x1+2x2=60 
The feasible region is a 
polytope 

0x
0x
42x3

60x2x4
48x4x2

:under 
x4x6max

2

1

1
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21
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≥
≥
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≤+
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Geometric solutions 

x1 

x2 

Región 
factible 

6x1+4x2=J1 

x1
*=12, x2

*=6 

6x1+4x2=J2 > J1 

6x1+4x2=J* 

The solution is 
located in a vertex 
of the feasible 
region 

0x
0x
42x3

60x2x4
48x4x2

:under 
x4x6max

2

1

1

21

21

21

≥
≥
≤

≤+
≤+

+
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Feasible region 

x1 

x2 

The feasible region is a 
polytope in Rn 

Inequalities 

0

min

≥
≤

x
bAx

xc'
x
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LP Problems 

x1 

x2 

x1 

x2 
x* x* 

The optimal solution, if it exist, 
is located in a vertex of the 
polytope 

Multiple 
solutions 

Single 
optimum 

The feasible region is a 
polytope in Rn 
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Constraints 

x1 

x2 

12 

Feasible 
region 

LP problem with unbounded 
cost function. There is no 
solution: The LP problem has 
no solution: there is no 
feasible x such that J(x) is 
greater than the value of the 
function at any other point 

An LP problem may have 
also no solution because 
the feasible set is empty 
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Vertices 

x1 

x2 

If x is a vertex, it is 
placed in the 
intersection of two active 
and independent 
constraints 

x1 

x2 

x3 

In Rn a vertex is defined as the common 
point of, at least, n independent and 
active constraints 

vertex 

vertex 

An active constraint in 
x means that the 
constraint is satisfied 
as an equality 
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Standard LP Problem  

0x
bAx

xc'
x

≥
=

=Jmax
A(m x n) 

x(n x 1) 

Rank(A)=m 

n > m 

b ≥ 0 

If n = m there is only a single solution and if  n < m likely there will be no 
solution at all. So, the only case that is worth to consider is when n > m 

A constraint that is linear combination of other ones is redundant and can be 
suppressed. This explains the condition rank(A) = m 

The standard LP problem has n+m constraints, m are equality constraints 
and n are inequality ones. Notice that it is formulated as a maximization one. 

mnmnmm

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa

=+++

=+++
=+++

...
.....

...
...

2211

22222121

11212111
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Example 

0x

x'c
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423
6024
4842

42
60
48

10003
01024
00142

max00046max

51

421

321

5

4

3

2

1

54321

xx
xxx

xxx

x
x
x
x
x

JxxxxxJ

The degrees of freedom of the problem are  
n – m = 5 - 3 =2 
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Definitions 

mnmnmm

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa

=+++

=+++
=+++

...
.....

...
...

2211

22222121

11212111
A basic matrix is a set of m linearly 
independent columns of A. 

A basic variable is a decision variable 
associated to one of these columns. 

As rank(A) = m it is always possible 
to find, at least, a basic matrix 

A basic solution is a solution of Ax= b that is obtained fixing the value 
of the n-m non basic variables to zero and solving the equation       
Ax = b for the m basic variables. 

A basic feasible solution is a basic solution that verifies all constraints 
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Example 
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42
60
48
0
0

420.3
600.20.4
480.40.2

423
6024
4842

42
60
48

10003
01024
00142

5

4

3

2

1

5

4

3

51

421

321

5

4

3

2

1

x
x
x
x
x

x
x

x

xx
xxx

xxx

x
x
x
x
x

0x
Basic 
matrix 

Basic 
variables 

Basic 
solution 
and also 
basic 
feasible 
solution 
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Vertices = Basic feasible solutions 

mnmnmm

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa

=+++

=+++
=+++

...
.....

...
...

2211

22222121

11212111 A basic feasible solution x, verifies m 
equations Ax = b, so, it satisfies m 
active constraints, as well as n-m 
relations xi = 0. Hence, it satisfies n 
– m + m = n constraints in active 
form and consequently is a vertex A vertex satisfies n independent 

and active constraints. If x is 
feasible, it must satisfy all 
equations. There is only  m 
equality constraints, Ax = b, 
hence, it must satisfy too other   
n-m,  xi ≥0  as equalities. So, x 
corresponds to a feasible basic 
solution.  

Vertices= basic feasible solutions 
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Degenerate Vertices 

x1 

x2 A vertex x, or basic feasible 
solution, is non degenerate if it 
satisfies exactly n active 
constraints.  

If it satisfies more than n active 
constraints it is called 
degenerate 

Non 
degenerate 
vertex 

Degenerate 
vertex 

x1 

x2 
Feasible set 

0,0
754

32max

21

21

21

≥≥
=+
+

xx
xx

xx

Non degenerate vertices 
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Redundant constraints 

0x
0x
36x3

60x2x4
48x4x2

:under 
x4x6max

2

1

1

21

21

21

≥
≥
≤

≤+
≤+

+

x1 

x2 

12 

x1=12 

2x1+4x2=48 

Feasible 
región 

4x1+2x2=60 
Redundant constraint: the 
feasible region doesn’t 
change if the constraint is 
omitted 

change 

Degenerate 
vertex 
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LP problem 

x1 

x2 
x* 

Optimo 
If the solution is located in a vertex 
and a vertex is a basic feasible 
solution, one could think in a 
solution method that would 
evaluate J = c’x at each basic 
feasible solution and would choose 
that best one, if it exist. 

The maximum number of vertices corresponds to the different groups of 
m columns that we can form using the n ones of A, that is: 

)!(!
!

mnm
n

m
n

−
=







 If n is big, this can be an enormous number: e.g. 
for n=100, m=50   there are 1029 combinations! 
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The Simplex Algorithm (Dantzig 
1947) 

The Simplex algorithm is an intelligent way of travelling through the 
vertices of the feasible region such that 

It founds a vertex 

Check if it is optimum 

If not, it moves to another neighbouring vertex having a better value of J 

It also detects the absence of solution due to a unfeasible set or an 
unbounded cost function. 

Hence, in a finite number of steps, the algorithm can found the optimum 
It operates in two phases:  

I  Finds the initial vertex or detects that there is no solution 

II Finds the optimum, or detects that the problem is unbounded 



Cesar de Prada ISA-UVA 25 

Phase I of the simplex algorithm 

In its first step, the simplex algorithm transforms the original LP 
problem into the following canonical format: 

mnmn1m1m,mm

2nn21m1m,22

1nn11m1m,11

bxa...xax
.....

bxa...xax

bxa...xax

=+++

=+++

=+++

++

++

++

where m variables (in the example the first m) appear only in an equation 
and with coefficient one, and also 0bi ≥

or concludes that there is no feasible solution 
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Transformation to canonical form 

The conversion can be made choosing a base B. For simplicity, we will 
assume that it corresponds to the first m variables. (It is always possible 
to switch columns in order to place the selected variables in these 
positions). Then, one can operate as: 

[ ] [ ] [ ] bxNBIbBxNBBbxNBbAx 11 =⇒=⇒=⇒= −−− 1

So that the system is in the canonical form format. 

Alternatively, the Gauss-Jordan elimination can be used for the same 
purpose. In this context, the operations performed with linear 
combinations of the files are called pivot operations.  

From this format, a right away solution is:  

additionin  feasible isit 0b fi)0,...,0,b,....,b,b( im21 ≥
(This point is discussed later on) 
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Example 
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60
48
0
0

420.3
600.20.4
480.40.2

423
6024
4842

42
60
48

10003
01024
00142

5

4

3

2

1

5

4

3

51

421

321

5

4

3

2

1

x
x
x
x
x

x
x

x

xx
xxx

xxx

x
x
x
x
x

0x
Basic 
matrix 

Basic 
variables 

Basic 
feasible 
solution 
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Simplex, phase II 

mnmn1m1m,mm

2nn21m1m,22

1nn11m1m,11

bxa...xax
.....

bxa...xax

bxa...xax

=+++

=+++

=+++

++

++

++

Basic  (or 
dependent) 

An initial vertex is 
generated easily: 

n,...,1mj
m,...,2,1i

0x   non basic
0bx   basic

j

ii

+=
=





=
≥=

The set of basic variables is called a base xB 

)'x,...,x,x( m21B =x
As the non-basic variables are 0, if cB=(c1,c2,…,cm) then: 

BB'J xc=

Non-basic  (or 
independent) 
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Adjacent Vertex 

x1 

x2 

x1 

x2 

x3 

vertex 

vertex 

An active 
constraint in x 
fulfils the 
constraints with = 

Adjacent vertices differ just in one constraint 
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Adjacent vertices 
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42
36
0

12
0

x
x
x
x
x

42x0.3
60xx.20.4
480x.40.2

42xx3
60xx2x4
48xx4x2

42
60
48

x
x
x
x
x

10003
01024
00142

5

4

3

2

1

5

42

2

51

421

321

5

4

3

2

1

0x
Basic 
matrix 

Basic 
variables 

Basic 
feasible 
solution 

x1 x1 

x2 x2 

The active constraint 
x2 = 0 is changed by 
x3 = 0 in order to 
generate an adjacent 
vertex. This means 
that x3 moves out of 
the basis and x2 
comes in 
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Adjacent vertex 

An adjacent vertex differs from its neighbours in just one active constraint. 

In order to obtain an adjacent vertex, the simplex method moves one 
non-basic variable to the basis and swaps it with a basic variable. 

The variables to be swapped are chosen so that the cost function 
improves as much as possible 

mnmn1m1m,mm

2nn21m1m,22

1nn11m1m,11

bxa...xax
.....

bxa...xax

bxa...xax

=+++

=+++

=+++

++

++

++ Assign the value zero to n-m 
variables and solve Ax=b for the 
others. Which are the best two 
variables to swap? 
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Adjacent vertex 
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mnmnsms1m1m,mm

rnrnsrs1m1m,rr

1nn1ss11m1m,11

bxa...xa...xax
.....

bxa...xa...xax
.....

bxa...xa...xax Assume that we 
increase the value 
of a non-basic 
variable xs from 0 to 
1,maintaining the 
remaining ones in 0 

ijn,...,1mj0x
1x

m,....,1iabx
1x if

bxax
.....

bxax
.....

bxax

j

s

isii

s

mss1m

rsrsr

1ss11
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=−=
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Relative gain 









≠+==
=

=−=
⇒=

ijn,...,1mj0x
1x

m,....,1iabx
1x if

j

s

isii

s

Of course, the change in xs should 
be such that one basic variable 
becomes zero, making it non-basic 
in this way, but, for the moment, 
let’s keep the value xs = 1 

The change in the cost function J would be: 

sBs

m

1i
isis

m

1i
iis

m

1i
isii 'caccbcc)ab(cJ Pc−=−=−






 +−=∆ ∑∑∑

===

If the relative gain (change of J per unit change in xi) of a non-basic variable 
xs is > 0, then J will improve when xs is converted into a basic variable 
because its value will change from 0 to a positive one.  

Ps non-basic column of A 
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Extremum conditions 

If the relative gains of all non-basic variables are negative or zero, then all 
adjacent vertex to the current one have values of J lower than the current 
one and this vertex is a local minimum, but as the problem is convex 
(linear) the local optimum is also a global one. 

 

 

If a non-basic variable xs has a relative gain >0, then, J will improve if the 
value of this variable is increased by converting it into a basic variable. 

Which is the non-basic variable that should be selected? The one with 
the highest relative gain. 

How much should its value be increased? Which basic variable should be 
removed from the basis? 

''

n,...,1ms0'c

B

sBs

0NBc'c
Pc

1
N ≤−

+=≤−
−
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How much should its value be increased? 
Which basic variable should be removed 
from the basis? Rule of the lower ratio 









↓⇒↑>
⇒↑=

↑⇒↑<
=−=

isis

isis

isis

sisii

xx0a if
ctexx0a   if

xx0a if
m,...,1ixabx

The maximum change in xs that respects the 
constraint xi ≥ 0, for all basic variables is: rs

r

is

i

a a
b

a
b

is

=







>0

min

When xs  is assigned the value br/ars, the basic variable xr will became 
0 and, hence, will be converted into a non-basic one, swapping roles 
with xs. The change in J will be given by: 

0
a
bc

rs

r
s >









If the value of a non-basic variable xs is changed, the value of the basic 
variables changes to: 

Notice that xs 
only can change 
from 0 to a 
positive value 
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Unbounded solutions 









↓⇒↑>
⇒↑=

↑⇒↑<
=−=

is

is

is

sisii

xxa
ctexxa

xxa
mixabx

0 si
0 si
0 si

,...,1

is

is

is

If the value of a non-basic variable xs is changed, the value of the basic 
variables changes to: 

Notice that if all elements of the colum s verify: 

m,....,1i0ais =∀≤

Then the value of xs can be increased as much as one wish without 
any risk that any basic variable xi become negative. So, as J 
increases when xs increases, there is no upper bound in J and the 
LP problem has no solution. 
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Degenerate solutions 

If it happens that after computing a new basic solution, any of the basic 
variables is zero, then the vertex (or the basic feasible solution) is called 
degenerate.  

They can appear in the initial vertex when a      is zero, or when 
computing a new vertex. In this case as 

ib

0min
0

==







>

rs

r

is

i

a a
b

a
b

is

The increment in J will 
be: 

0
a
bc

rs

r
s =









And no improvement will be achieved in this iteration. In theory, it may 
happens that after several changes without improvements, one returns 
to a previous visited vertex, creating a cycle and stopping the 
convergence of the algorithm. Nevertheless, in practice, this can be 
avoided in a well programmed algorithm. 
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Summary 

1 Formulate the problem in 
canonical form, write the associated 
table and choose a basis. 

2 For every non-basic variable, 
compute the relative gain and 
choose the variable with the highest 
one.     If the relative gain is ≤ 0, the 
current vertex is optimum. If not, 
select this variable xs to be moved 
to the basis. If all  ais are < 0, then 
there is no solution. 

3 Compute the lowest of all ratios 
bi/ais (ais>0) in order to select which 
basic variable is moved from the 
basis.  

    c1 c2 c3 c4 c5       

    6 4 0 0 0       

cB Basis x1 x2 x3 x4 x5 b   
(ais>0)    

bi/ais 

0 x3 2 4 1 0 0 48   24 

0 x4 4 2 0 1 0 60   15 

0 x5 3 0 0 0 1 42   14 

cs-
sum(ciais) 

Relati
ve 

gain 6 4       0 J   

4 Pivot on the element      of this file 
and row in order to formulate again 
the problem in canonical form and 
repeat the process 
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Example 

0x
0x
42x3

60x2x4
48x4x2

:under 
x4x6max

2

1

1

21
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21

≥
≥
≤

≤+
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+

Manufacture of silk and 
cotton 

0x

xc'
xx

≥
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42
60
48

x
x
x
x
x

10003
01024
00142

Jmaxx0x0x0x4x6Jmax

5

4

3

2

1

54321

Standard canonical form 

Excel 
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Phase I of the simplex algorithm 

[ ] [ ] [ ] bxNBIbBxNBBbxNBbAx 11 =⇒=⇒=⇒= −−− 1

We have seen that selecting m independent columns of A, it is always 
possible to convert the LP problem to canonical form: 

)0,...,0,b,....,b,b( m21And find a basic solution: 

0b  all if i ≥ A basic feasible 
solution has been 
found and Phase II can 
start 

x1 

x2 

vertex 

But if some bi is < 0  the previous basic 
solution is not feasible and an 
alternative must be found 
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Phase I of the simplex algorithm 

If some bi< 0, then both sides of the corresponding equation can be 
multiplied by -1, so that all bi will be positive. (but the solution will remain 
unfeasible). Next the following associated LP problem can be formulated 
and solved: 

[ ]

[ ] [ ] #  positive tob all convertingafter     is  ~~  where

,~~

)1...,1,1,1(max

i
1

,

bxNBIβxMI

0x0νβ
x
ν

MII

ν
λx

==

≥≥=






−

−

Notice that the associated LP have always an initial basic feasible 
solution [ν,x]=(β,0). If the solution of the associated LP is [ν*,x*]=(0,x$), 
then x$ is an initial basic feasible solution of the original LP. Otherwise, 
there is no feasible solution to the original LP 

If the original LP problem 
has a feasible solution x, 
then the associated LP will 
have a solution [ 0 , x] 
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A small change 

0x
0x
42x3

60x2x4
48x4x2

:under 
x4x6max

2

1

1

21

21

21

≥
≥
≤

≤+
≤+

+

x1 

x2 

14 

x1=14 

2x1+4x2=48 Feasible 
region 

4x1+2x2=60 

Assume now that the machine 
number 3 must be processing 
silk at least 12h. per week 

Original 
problem: 
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A small change 

0x,0x
12x3
42x3

60x2x4
48x4x2

:under 
x4x6max
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1

1
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21
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≥≥
≥
≤

≤+
≤+

+

x1 

x2 

14 

x1=14 

2x1+4x2=48 
Región 
factible 

4x1+2x2=60 3x1 = 12 
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Initial basic feasible solution 

0x,0x
12x3
42x3

60x2x4
48x4x2

: a sujeto
x4x6max
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: a sujeto
)'0,0,0,0,4,6(max
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4

3

2

1

x
x
x
x
x
x

(0,0,48,60,42,-12) is not feasible, so, the phase I of the 
simplex algorithm is needed 
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Example phase I 
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Provides an initial 
vertex for: 

Excel 

All positive 
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Mixtures  (diet) 

The following table provides prices and nutrient content of several foods: 

Daily 
minimum 

Nutrient Milk 
(cup) 

Eggs 
(unit) 

Meet 
(100g) 

Bread 
(piece) 

Cheese 
(100g) 

75 Proteins g 8 7 20 2 7 
1.2 Calcium  g 0.3 0.03 0.01 0.01 0.25 
1.2 Iron   mg 0.1 1.5 3 0.6 0.1 
3600 Calories 175 75 150 75 100 

Price   € 0.3 0.1 0.8 0.1 0.6 
As well as the minimum daily dose of each one. Which is the cheapest 
menu that covers the minimum daily amount of each nutrient, assuming 
that at least two pieces of bread must be included? 
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Mixtures 

xj amount of each type of food (x1= cups of milk, x2=number of eggs, 
x3= grams of meet/100, x4 = pieces of bread, x5= grams of chease/100) 
for the menu 

ni minimum daily amount that must be eaten of every nutrient i 

cij content of nutrient i in every unit of food j 

pj price of a unit of food j 

2x,0x

4,....,1inxc

xpmin

4j

i
j

jij

j
jjx j

≥≥

=≥∑

∑
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Blending  

Two types of kerosene A and B, and two types of car naphtha A and B, are 
manufactured in a refinery by mixing  alkylate, basic gasoline and cracked 
gasoline. Its physical properties and daily production are given in the table:  

Row 
Product 

PVR Octane 
number (0) 

Octane 
number 
(250) 

Production 
m3/day 

Alkylate 5 94 108 4000 
Basic 
Gasoline 

4 74 86 4000 

Cracked 
Gasoline 

8 84 94 2500 

With or without  250 mg/m3 
of tetraethyl lead (TEL) 
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Blending 

Product PVR TEL  Octane 
number 

Benefit      
€/ m3 

Kerosene A ≤7 0 ≥ 80 100 

Kerosene B ≤7 250 ≥ 91 110 

Leaded 
naphtha  A 

--- 250 ≥ 87 95 

Unleaded 
naphtha  B 

--- 0 ≥ 91 95 

And the mixtures must have the following properties: 

Decide which must be the daily production of each product and the 
blending that provides the maximum benefit per day 

TEL: mg/m3 de tetraethyl lead 
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Blending- Nomenclature 

xaA = m3 of alkylate spent daily in the manufacturing of kerosene  A 

xaB = m3 of alkylate with TEL spent daily in the manufacturing of kerosene B 
 
xaS = m3 of alkylate spent daily in the manufacturing of unleaded naphtha A  
 
xaP = m3 of alkylate with TEL spent daily in the manufacturing of leaded 
 naphtha B  
 
xbA, xbB, xbS, xbP  m3 of basic gasoline spent.. .... 
xcA, xcB, xcS, xcP   m3 of cracked gasoline spent… 
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Blending - Aim 

2500
4000
4000

≤+++
≤+++
≤+++

cPcScBcA

bPbSbBbA

aPaSaBaA

xxxx
xxxx
xxxx

Find the blend that, satisfying the specifications of quality (in PVR and 
octane index) and the availability of products, maximizes the daily benefit 

The amount of each type of products used in the blend cannot be bigger 
than its daily availability 

)(95)(95)(110)(100max cPbPaPcSbSaScBbBaBcAbAaA xxxxxxxxxxxx +++++++++++
x
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Blending - PVR 

The kerosene of each type must comply with the minimum specifications 
of PVR: 

7845

7845

≤
++

+
++

+
++

≤
++

+
++

+
++

cBbBaB

cA

cBbBaB

bB

cBbBaB

aB

cAbAaA

cA

cAbAaA

bA

cAbAaA

aA

xxx
x

xxx
x

xxx
x

xxx
x

xxx
x

xxx
x

Which can be written in linear form: 

)(7845
)(7845

cBbBaBcAbBaB

cAbAaAcAbAaA

xxxxxx
xxxxxx

++≤++
++≤++
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Blending – Octane number 

879486108

91847494

919486108

80847494

≥
++

+
++

+
++

≥
++
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++

+
++

≥
++

+
++

+
++

≥
++

+
++

+
++

cPbPaP

cP

cPbPaP

bP

cPbPaP

aP

cSbSaS

cS

cSbSaS

bS

cSbSaS

aS

cBbBaB

cB

cBbBaB

bB

cBbBaB

aB

cAbAaA

cA

cAbAaA

bA

cAbAaA

aA

xxx
x

xxx
x

xxx
x

xxx
x

xxx
x

xxx
x

xxx
x

xxx
x

xxx
x

xxx
x

xxx
x

xxx
x

The kerosene and naphtha of each type must comply with the minimum 
specifications of octane number and TEL content: 

Which can be written also in linear form 
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Blending The final problem can be formulated as a LP one 

)(95)(95)(110)(100max cPbPaPcSbSaScBbBaBcAbAaA xxxxxxxxxxxx +++++++++++
x

2500
4000
4000

≤+++
≤+++
≤+++

cPcScBcA

bPbSbBbA

aPaSaBaA

xxxx
xxxx
xxxx

)(7845
)(7845

cBbBaBcBbBaB

cAbAaAcAbAaA

xxxxxx
xxxxxx

++≤++
++≤++

)(879486108
)(91847494

)(919486108
)(80847494

cPbPaPcPbPaP

cSbSaScSbSaS

cBbBaBcBbBaB

cAbAaAcAbAaA

xxxxxx
xxxxxx

xxxxxx
xxxxxx

++≥++
++≥++
++≥++
++≥++

0x ≥
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Blending 

The total amount consumed of each row product will be: 

mgxxxxxxTEL
xxxxx
xxxxx
xxxxx

cPbPaPcBbBaB

cPcScBcAc

bPbSbBbAb

aPaSaBaAa

)(250 +++++=
+++=
+++=
+++=

And the total amount produced of every final product: 

cPbPaPP

cSbSaSS

cBbBaBB

cAbAaAA

xxxx
xxxx
xxxx
xxxx

++=
++=
++=
++=
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Complexity 

 The relation between the time spent by an algorithm 
in finding a solution and the size (n) of the decision 
vector x is called complexity 

 The number of vertices that the simplex algorithm 
must visit depends on the initial vertex. In the worst 
case in may be 2n-1, so the algorithm has an 
exponential complexity O(2n-1) 

 A desirable property for an algorithm to be useful is 
having polynomial complexity 
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Other LP algorithms 

 There are other methods for solving LP problems: 
– Revised simplex. It has exponential complexity but reduces 

the number of computations on the columns.  
– Khachiyan Algorithm. It has polynomial complexity O(n4L) 

where L depends on the required precision.  
– Karmarkar Algorithm. It is an interior point method of 

polynomial complexity O(n3.5L). It is an efficient method for 
large scale problems. It does not travel through vertices, but 
it generate a sequence of points starting from an feasible 
point in the interior of the feasible set. 



Interior point 
 methods 
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x1 

x2 

vertex 
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Interior points methods 

 Karmarkar algorithm (1984) is the best known 
 For simplicity, the Dikin method, which can be applied to LP 

problems in standard form will be described briefly: 

0x
bAx

xc'
x

≥
=

=Jmax

x1 

x2 

J = cte 
c 

x3=0 

x4=0 

x5=0 

Starting from a point in the 
interior of the feasible set, x 
> 0, the point is moved to 
other places that respect 
the constraints and improve 
the cost J 
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Interior point method (Dikin) 

x1 

x2 

J = cte 
c 

x3=0 

x4=0 

x5=0 

0x
bAx

xc'
x

≥
=

=Jmax

Any move respecting the constraints 
must fulfil: 

0ΔxAbΔx)A(x =⇒=+

At any feasible x, the vector c points to 
an improvement direction of J, but in 
order to guarantee that ∆x fulfils the 
constraints, the move should follow a 
direction perpendicular to A given by 
its orthogonal projection 

A)AA(AI 1TT
A

−⊥ −=∏

Moving x in the direction: 

The equality constraints are 
satisfied 

[ ]cA)(AAAI 1TT −−=∆x
[ ]

0AAc
AxA

=−=

=−=∆
−

−

cA)(AAA
cA)(AAAI

1TT

1TT



Cesar de Prada ISA-UVA 61 

Interior point method (Dikin) 

x1 

x2 

J = cte 

c 
x3=0 

x4=0 

x5=0 

0x
bAx

xc'
x

≥
=

=Jmax

[ ]cA)(AAAI 1TT −−=∆x

Moving x in the direction: 

J is increased while the constraints 
are respected. 

In order to assure that x ≥ 0 it is 
important also to choose an 
adequate step lenght σ 

Usually, a previous scaling facilitate 
the selection of σ based on the most 
negative component of ∆x 

x∆σ+=+ k1k xx

If all components of ∆x are 
positive, then the problem is 
unbounded and there is no 
maximum 

∆x 
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Dual Problem 

There exists a dual LP problem associated to every primal LP one 

0x
bAx

xc'
x

≥
≤

max

0z
czA

zb'

≥
≥'

min
z

(mxn)(nx1) 

(1xn)(nx1) (1xm)(mx1) 

(nxm)(mx1) 

There is a relation 
between both 
problems that can 
be used to analyse 
the solutions and 
think in alternative 
solution paths 

The dual of the dual is the original LP problem 

(mx1) (nx1) 
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Example 
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Dual problem of the LP standard one 

0
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Example 
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Duality Lemma 

If x and z are two feasible solutions of the primal and dual LP problems 
respectively, then: 

zb'xc' ≤

So, any solution of the primal is a lower bound of any solution of the 
dual 

In fact, if x and z are feasible points: Ax = b, x ≥ 0,    A’z ≥ c 

A’z ≥ c, ⇒ x’A’z ≥ x’c  but  x’A’ = b’, ⇒  b’z ≥ x’c  

So, if one of the problems is unbounded, the other has no feasible 
solution 

The result can be applied also when the LP problem is formulated with 
inequalities 
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Duality Lemma 

According to the duality lemma, if x and y are two feasible solutions of the 
primal and dual LP problems respectively, then: 

zb'xc' ≤

Hence, if x0 and z0 are two feasible points of the primal and dual LP 
problems respectively and they verify  c’x0 = b’z0, then both are optimal 
for these problems because they reach an upper /lower bound 

The opposite is also true and jointly they form the duality theorem 
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The duality Theorem 

If the primal LP has an optimal solution x*, then the dual has also a solution 
and they verify: c’x* = b’z* 

0

max

≥
=

x
bAx

xc'
x

czA'

zb'
z

≥

minPrimal Dual 

Every optimal solution of the primal LP must be a basic feasible solution 
verifying: (the columns have been reordered so that B is a basis) 

[ ] [ ] [ ]
[ ] ''

B
'
N

*

*1***

0NBcc
x
x

ccxc'

bBxNBIbBxNBBbxNBbAx

1
*
N

*
B

NB

111

≤−







=

=⇒=⇒=⇒=

−

−−−−

Extremum condition 
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Duality Theorem 

''  defining'' N
1

BN
1

B cNz'Bcz'cNBc ≥⇒=≥ −−

z is a basic feasible solution of the dual problem. In fact: 

[ ] [ ] [ ] [ ] c'c'cNB'c'cNBB'cNBz'Az' NB
1

BB
1

B =≥=== −− '

So it verifies z’A ≥ c’ and it is feasible in the dual. In addition: 
*
BB

1
B x'cbB'cbz' == −

So, because of the duality lemma, z is optimum for the dual as it reaches 
an upper bound, because (B-1b, 0) is a solution of the primal 

The result can be applied also when the LP problem is formulated 
with inequalities 
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Solution of the dual problem 

If the optimal solution of the primal LP problem is known, then it is 
possible to compute the solution of the dual (and viceversa) 

In order to compute z*, one must use the expression Ax = b where the 
columns have been reordered so that the m first ones correspond to the 
base B of the optimum. 

The optimal solution z* of the dual can be obtained from: 

1'
BBcz −='*

Which can always be computed as B is a basis 
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Sensitivities of the optimum 

0

max

≥
=

=

x
bAx

xc'
x

J How does the optimal cost J* change if the constraint vector 
b changes? 

'*
***

z
b
zb'

b
xc'

b
=

∂
∂

=
∂

∂
=

∂
∂J

The solution z* of the dual LP problem provides the sensitivity of the 
optimal cost of the primal with respect to the constraint vector b 

The values z* are called sometimes shadow prices 

Obviously, it also happens: 

'*
**

x
c
xc'

c
=

∂
∂

=
∂
∂J
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Example: How much changes J*?  

0x
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60x2x4
48x4x2
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Primal 

How much changes the optimal cost 96 if 
machine 1 can work for 50 h. per week? 

*
1

1

*

z
b
J

=
∂
∂

In order to answer this question the solution of 
the dual problem must be computed, either 
directly or, in a more efficient way, from the 
base B of the optimal solution of the primal LP 

1'
BBcz −='
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Example: How much changes J*? 

0
423

6024
4842

46max

1

21

21

21

≥








≤
≤+
≤+

+

x

x

x
xx
xx

xx

[ ] [ ] [ ]03/43/1
103
024
042

046zzz

'
1

321 =
















=

=
−

−1'
BBcz

0x

x

≥















=







































++++=

42
60
48

x
x
x
x
x

00103
01024
10042

x0x0x0x4x6Jmax

3

4

5

2

1

34521

[ ]03/43/1* =z 3/22)4850( *
1

1

*

==
∂
∂

− z
b
J

Excel 

B 



Cesar de Prada ISA-UVA 74 

Transport problems 

A firm has factories in Galicia, La Rioja and Murcia, and warehouses in 
Seville, Madrid, Barcelona, Santander and Bilbao. The cost of sending a 
unity of a product from a factory to a warehouse is given in the adjoint 
table, as well as the stocks in every factory and the demands from the 
warehouses: 

Demandas por almacén--> 180 80 200 160 220
Plantas: Existencias Costos de envío de la planta "x" al almacén "y" (en la intersecció
Galicia 310 10 8 6 5 4
La Rioja 260 6 5 4 3 6
Murcia 280 3 4 5 5 9

Which is the amount of product that must be sent from each factory to 
every warehouse in order to minimize the transport costs while satisfying 
the demand of each warehouse? 

Sevilla Madrid Barcelona Santander Bilbao
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Transport problems 

i set of factories         j  set of warehouses 

xij  amount of product sent from factory i to warehouse j 

cij  cost of sending a unity of product from factory i to warehouse j 

ei   stock of product in factory i 

dj  demand of warehouse j 

5,4,3,2,1j3,2,1i

0xexdx

xcmin

iji
j

ijj
i

ij

j,i
ijij

==

≥≤≥ ∑∑

∑x

Excel 
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Excel 

Cantidad a enviar de la planta "x" al almacén "y' (en la intersección):
Plantas Total Sevilla Madrid Barcelona Santander Bilbao
Galicia 300 0 0 0 80 220
La Rioja 260 0 0 180 80 0
Murcia 280 180 80 20 0 0

--- --- --- --- ---
TOTAL: 180 80 200 160 220

Demandas por almacén--> 180 80 200 160 220
Plantas: Existencias Costos de envío de la planta "x" al almacén "y" (en la intersección):
Galicia 310 10 8 6 5 4
La Rioja 260 6 5 4 3 6
Murcia 280 3 4 5 5 9

Envío: 3 200 $ 540 $ 320 $ 820 $ 640 $ 880 $

Precision: Refers to the error in the constraints 

Convergence: Refers to the error in the cost 

Tolerance: Refers to the error in the cost (MILP)  
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Sensibility of the constraints 

Restricciones 

    Valor Sombra Restricción Aumento Aumento 

Celda Nombre Igual precio lado derecho permisible permisible 

$B$8 Galicia Total 300 0 310 1E+30 10 

$B$9 La Rioja Total 260 -2 260 80 10 

$B$10 Murcia Total 280 -1 280 80 10 

$C$12 TOTAL: --- 180 4 180 10 80 

$D$12 TOTAL: --- 80 5 80 10 80 

$E$12 TOTAL: --- 200 6 200 10 80 

$F$12 TOTAL: --- 160 5 160 10 80 

$G$12 TOTAL: --- 220 4 220 10 220 

Admissible change in the 
constraints before the 
shadow price changes 

Decrease 
Constraints 
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Sensibility (cost function) 

    Valor Gradiente Coeficiente Aumento Aumento 

Celda Nombre Igual reducido objetivo permisible permisible 

$C$8 Galicia Sevilla 0 6 10 1E+30 6 

$D$8 Galicia Madrid 0 3 8 1E+30 3 

$E$8 Galicia Barcelona 0 0 6 1E+30 0 

$F$8 Galicia Santander 80 0 5 0 1 

$G$8 Galicia Bilbao 220 0 4 4 4 

$C$9 La Rioja Sevilla 0 4 6 1E+30 4 

$D$9 La Rioja Madrid 0 2 5 1E+30 2 

$E$9 La Rioja Barcelona 180 0 4 0 1 

$F$9 La Rioja Santander 80 0 3 1 0 

$G$9 La Rioja Bilbao 0 4 6 1E+30 4 

$C$10 Murcia Sevilla 180 0 3 4 4 

$D$10 Murcia Madrid 80 0 4 2 5 

$E$10 Murcia Barcelona 20 0 5 1 2 

$F$10 Murcia Santander 0 1 5 1E+30 1 

$G$10 Murcia Bilbao 0 6 9 1E+30 6 

Relative gains 
(min ≥0) 

decrease 

Possible 
multiplicity 
of the 
optimal 
solution 

Optimal 
solution 
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Directed Graphs 

Nodes 

Arcs 

Flows in one or 
both ways 

xij 
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Network flows problems 

A chemical company has several plants connected by pipelines whose 
maximum capacity in m3/min, direction and architecture can be seen in the 
figure, besides the cost of sending a unit flow (in red). It wishes to send a 
flow of 9 m3/min from plant number 1 to plant number 6. Which is the best 
route in order to minimize the transport costs? Assume that no 
accumulation or generation of product takes place in the intermediate 
plants. 

1 

2 

3 

4 

5 

6 

5, 6 

8, 9 

3, 3 

4, 5 

2,1 

3,2 

6,4 

5,
1 

9,6 

8, 5 
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Flow in networks 

1 

2 

3 

4 

5 

6 

5, 6 

8, 9 

3, 3 

4, 5 

2,1 

3,2 

6,4 

5,
1 

9,6 

8, 5 

xij   amount sent from node i to node j 

connected not are jand  i if  0xUx0

9x9x6,1ixx
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c cost 
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Flow in networks GAMS 

SET 
n nodos   /nod1,nod2,nod3,nod4,nod5, nod6/ 
i(n) nodos de salida  /nod1,nod2,nod3,nod4,nod5/ 
j(n) nodos de llegada  /nod2,nod3,nod4,nod5,nod6/ 
k(n) nodos intermedios /nod2,nod3,nod4,nod5/; 
alias (n,nn) 
 
Table c(n,nn) costes de envio 
         nod1  nod2   nod3 nod4  nod5  nod6 
nod1       0      6       9        0        0      0 
nod2       0      0       3        5        1      0 
nod3       0      0       0        2        4      0 
nod4       0      0       0        0        0      6 
nod5       0      0       0        1        0      5 
nod6       0      0       0        0        0      0; 
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GAMS 

Table b(n,nn) capacidad de envio 
          nod1  nod2  nod3  nod4  nod5 nod6 
nod1       0      5        8       0        0       0 
nod2       0      0        3       4        2       0 
nod3       0      0        0       3        6       0 
nod4       0      0        0       0        0       9 
nod5       0      0        0       5        0       8 
nod6       0      0        0       0        0       0; 
 
Variables 
x(n,nn) cantidades de envio 
z; 
Positive Variables x(n,nn); 
x.up(n,nn) = b(n,nn); 
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GAMS 

Equations 
obj      defines the cost function 
const1   defines the constraint on the first output node 
const2 defines the constraint on the last arrival node 
const3(n)   balance in one node; 
 
obj..          z =e= sum((i,j), c(i,j)*x(i,j)); 
const1..    sum(j, x('nod1',j)) =e= 9; 
const2..    sum(i, x(i, 'nod6')) =e= 9; 
const3(k)..    sum(i, x(i,k))=e= sum(j, x(k,j)); 
 
Model redes /all/; 
Solve redes using lp minimizing z; 
Display x.l; 



Cesar de Prada ISA-UVA 85 

Results GAMS 

Cesar de Prada ISA-UVA 85 

 
EXECUTION TIME       =        0.125 SECONDS      4 Mb  WEX236-236 Apr  6, 2011 
 
GAMS Rev 236  WEX-WEI 23.6.5 x86_64/MS Windows          10/25/11 03:12:45 Page 5 
G e n e r a l   A l g e b r a i c   M o d e l i n g   S y s t e m 
Solution Report     SOLVE redes Using LP From line 57 
 
               S O L V E      S U M M A R Y 
 
     MODEL   redes               OBJECTIVE  z 
     TYPE    LP                      DIRECTION  MINIMIZE 
     SOLVER  CPLEX            FROM LINE  57 
 
**** SOLVER STATUS         1 Normal Completion          
**** MODEL STATUS          1 Optimal                    
**** OBJECTIVE VALUE     144.0000 
 
 RESOURCE USAGE, LIMIT       0.149   (sg. CPU)   1000.000 
 ITERATION COUNT, LIMIT         2    2000000000 



Results GAMS 
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----     58 VARIABLE  x.L  cantidades de envio 
            nod2        nod3        nod4        nod5        nod6 
nod1   5.000       4.000 
nod2                                    3.000       2.000 
nod3                                    3.000       1.000 
nod4                                                                   6.000 
nod5                                                                   3.000 
 
---- VAR      z              -INF    144.000     +INF   
 
                               LOWER     LEVEL     UPPER    MARGINAL 
---- EQU obj                 .             .                  .           1.000       
---- EQU const1         9.000     9.000          9.000     9.000       
---- EQU const2         9.000     9.000          9.000     9.000  
…… 
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Results GAMS 
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---- VAR x  cantidades de envio 
 
                    LOWER     LEVEL     UPPER    MARGINAL 
 
nod1.nod2      .               5.000      5.000         -1.000       
nod1.nod3      .               4.000      8.000            .          
nod1.nod4      .                 .              .               -12.000       
nod1.nod5      .                 .              .                -13.000       
nod1.nod6      .                 .              .                -18.000       
nod2.nod3      .                 .            3.000             1.000       
nod2.nod4      .               3.000      4.000               .          
nod2.nod5      .               2.000      2.000            -5.000  
……. 
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Flow in networks, solution 
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Heat exchanger network synthesis 

Let’s assume that a network is optimal if it has the following 
characteristics: 

1. Minimum utility cost 

2. Minimum number of matches (units) 

3. Minimum investment cost (configuration and sizes) 



Cesar de Prada ISA-UVA 90 

Sequential synthesis of a heat exchanger 
network: 1 Minimum utility cost 

Which is the minimum utility cost in the heat exchanger 
problem ?: 

  

 
Fcp(kW/ºC) 

 
Tin(C) 

 
Tout(C) 

 
H1 

 
1 
 

400 
 

120 
 

H2 
 

2 
 

340 
 

120 
 

C1 
 

1.5 
 

160 
 

400 
 

C2 
 

1.3 
 

100 
 

250 
 

Steam: 500ºC              Cold water: 20-30ºC           Temp. difference = 20ºC 
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Sequential synthesis of a heat 
exchanger network 

C1 

Temperature 
intervals 

Heat content 

H1 H2 C1 C2 

420 400 
int 1 

400 380 
int 2 

180 160 
int 4 

340 320 
int 3 

120 100 

H1 

H2 

30 

60 90 

160 320 240 117 

60 120 78 

280 440 360 195 

250 

C2 
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Utility requirement in the heat 
exchanger network using LP 
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Model of Papoulias and Grossmann 
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Utility requirement in the heat 
exchanger network using LP 
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ws

Linear programming problem 

Qs = 60kW 

Qw  = 225 kW 

R1 = 30 kW 

R2 = 0 

R3 = 123 kW 

R2 = 0 there is a pinch in the temperature interval 340º-320ºC 

SOLUTION 
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Software 

 There are two main families of LP software : 
– Solvers : routines that implement algorithms and can be called from 

another software environment or language as dll’s and provide the 
LP optimum (CPLEX, LINDO, OSL, Matlab, NAG,...) 

– Modelling systems: Software environments that facilitate the 
description, solution, analysis and management of the LP problem. 
They allow to formulate the problem in a certain language (CPLEX, 
GAMS, XPRESS-MP, AIMMS, GUROBI,...) or structure (Excel). 
They call different solvers for finding the optimum. 

 The size of a problem very often is expressed as the number of 
non-zero elements of the A matrix (sparsity) A LP problem with 
less that 1000 non-zero elements is considered a small problem, 
and one with more than 50000 a big one. Modern solvers can 
solve this problems in short times, from 1 second to one hour. 
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