

Introduction to EcosimPro

www.ecosimpro.com

Simulation languages

Advantages:

- Provide support in all phases of model development and exploitation
- Allow the user focusing the attention in the problem and not in the programming
- Allow saving time
- Provide confidence in the results obtained
- Open the field to non-experts in modelling or computing and to the use of models in other fields

Key steps and concepts

- Process represented by a mathematical model V R*I = 0
- Specify the aims of the simulation (which variables are known, boundary conditions, and which ones must be computed): Example: I is known, voltage drop V wish to be computed
- Formulate the mathematical model according to the aims (Assign computational causality, create a partition) V = I*R
- Specify an experiment (Give values to the parameters and boundary conditions) R = 10, I = 2
- ✓ Solve the equations and display the results V = 10*2 = 20

Modelling languages

Software tools that facilitate:

- The description of a process model and the assignment of computational causality
- The description of the experiments to be performed
- Solving the equations
- Displaying results
- Provide other functionalities (optimization, parameter estimation, validation,...)

EcosimPro

- ✓ First version 1992, Unix, ESA
- ✓ First version under Windows: 1999
- Object oriented tool
- Support continuous, discrete and discrete event processes
- Models are built by textual description of from graphical libraries.
- Provides a software development environment
- ✓ Open code, C++, ActiveX, OPC,...
- ✓ Version 5, 2013, multiplatform QT
- ✓ Proosis

EcosimPro environment

Libraries /Workspaces

JUCIS

PROOSIS 3.4.14 ENTERPRISE	
File Edit Vew Tools Window Help	
📑 🗟 🔮 🔂 🖬 🚄 X 🛼 🕯	🖞 🥱 🥐 🔲 🔄 🗁 🚽 🎎 🕨 📕 👫 🔷 🗸 🌪 Previous 📫 Next 🗌 Case sensitive 🗍 Whole word 🗍 Find in Output
Workspace Path	EvaporatorV40v3.el* 🛛 📑 simula.exp 💟 📄 Lorenz.el 🖸
DYNAMIC C:/Programas/PROOSIS_3.4	/ 1 COMPONENT Lorenz
Library Version	2 3 Bifurcation analysis
GAS_EXAMPLES 1.0	4
LENZING 1.0	5 DATA A action Buttons
MATH 3.1.2	ACTION DATIONS
MECHANICAL 3.1	/ KLAL SIGma = 10 "parameter"
MODELOS 0.0	9 REAL $p = 8/3$
NMA_DISTILLATION_COLUMN 0.0	E 10 REAL x10 = 0 "initial condition"
OPTIMIZACION 0.0	11 REAL x20 = 1
OPTIMIZATION 1.3.1	= 12 REAL x30 =0
O OPTIMIZATION_EXAMPLES 1.0	
PORIS_LIB 1.1.1	$P_{CIIIIO} \to P_{CIIIO} \to P_{CIIIO}$
PROCESS 0.0	
IN PROCESS_EXAMPLES 0.0	17 REAL X1 Spect
4	18 REAL x3 "Temperature distortion"
8. 3 3 3	
Files Type	
Buckboost.el Source o	22 x1 = x10
DepositoLinealNoLineal.el Source of	= 23 x2 = x20
Deposito_PI.el Source o	24 x3 = x30
Dis_int_flash_reg.eds Schema	25
Hopfbifurcation.el Source of	26 CONTINUOUS
Lorenz.el Source o	27 29 x11 = rimet(x2 x1)
PI.el Source o	
ank lemp.el Source o	messages simulation Find Results
Two lanks.el Source o	Begin loading EL source file:
Source of Source of	C:/Ecosim5/MODELOS/sources/Lorenz.el
Ball.el	The loading EL source file
⊑ \$ & ♪ \ > 3 4	╞╴╪╴╡ ┉ ┿ ┉ ┝┥ ᅚ ━ 印 ⊕ ┍ ┍ ┍ ┍
MODELOS Lorenz	EL source file Ln: 26 Col: 14 Zoom: 100% Platform: win32_vc2010
	Vi 🚺 Mi 🔀 Ado 🗑 Mic 🖻 Mi 😰 mo 🙀 PRO 🕱 Micr 🗄 Office » 🎚 Escritorio » 🗒 Barras » 🗒 Software » 🗮 ES 🔺 🙀 и 🔐 🛱 9:04
	erezetteraan internetezetteraan internetezetteraan internetezetteraan internetezetteraan internetezetteraan internete
Mo	2010

Graphical environment

Basic elements

- COMPONENT: Represents a model. Includes data, variables, equations, events, topology,...
- PORT Defines the link of a component with the outside world. It plays the role of electrical connections, pipes, etc. that appear in the real world connecting elements.
- ✓ EXPERIMENT: Defines how to perform a simulation, giving values to data, boundary conditions, etc.
- LIBRARY: Set of files with ports, components, functions, etc. that belong to a certain field (e.g. CONTROL, ELECTRICAL, THERMAL, etc.) and can be used to define other components.

EcosimPro Environment

Creating a Workspace / library
Models described in Components
Components can be linked by ports
Editing a component. Example: a D.C. motor

New

Creating a component in a Library

	A D B A B B A B B A B B A B B A B A	
CHITROL LECTRICAL		12111111111
YDRAULC YDRAULC FOMPLES	component hydre elecuità	
A1H 000L05 0709	"Simple hydraulic circuit example 2"	
CRTS_LIN EST	ToroLogy	
	z_in = 0, a out = 0.	
	k = 1, p0 = 101323)	property and provide the
	HYDRAULIC. NydPipe HydPipe%(00011000
	a_an = 0, a dout = 0, 1 = 1,	Language
	d = 0.1, g = 0.02,	0 0
	dp_lam = 1000) DapJ remaps	* H & H & H & H
I sure Pastern Comme	Guard Boosment Red n Res	12221-11424
is Thursd, etc.		

Declarative equations. They will be manipulated symbolically according to the aims and boundary conditions of the simulation COMPONENT motorDC

DATA

REAL J = 2 of inertia"	"Momentum
REAL K = 3 constant"	"torque
REAL f = 0.01 coefficient	"friction
REAL R = 0.1 resistance"	"electrical
REAL Ke = 0.5	
DECLS	
REAL T "Torque"	
REAL W	"speed"
REAL V "voltage"	
REAL i	

COMPONENT motorDC

Analysing the correctness of the model from the point of view of the EL language

DATA REAL J = 2"Momentum of inertia" "torque constant" REAL K = 3REAL f = 0.01"friction coefficient REAL R = 0.1"electrical resistance" REAL Ke = 0.5DECLS REAL T "Torque" "speed" REAL w "voltage" REAL v REAL ÷ "current" CONTINUOUS J * w' = K * i - f * w - Tv = R * i + Ke * wEND COMPONENT

Partitions

- A partition is a math model associated to a process ready to define experiments on it.
- When there are more variables than equations the user should define the boundary conditions and, sometimes, solve problems related with high index and algebraic loops

Boundary conditions, e.g.: Applied voltage V and external torque T

Why partitions?

Same physical element and law

The mathematical formulation of the equations depends on the context

p₂

If p_1 and p_2 are given:

If p_1 and q are given:

$$q = k \sqrt{p_1 - p_2}$$
$$p_2 = p_1 - \frac{q^2}{k}$$

q

Aim: Making the model of a process independent of its use in a particular situation

Viewing a partition

INFO

VARIABLES:

NUN	I NAME	UNITS	EQUIV-TO	TYPE	MATH-TYPE	INITIAL	LRANGE	RRANGE	
1	J			REAL	DATA_VAR	0.001			1
2	L	H		REAL	DATA_VAR	0.01			1
3	R	ohmios		REAL	DATA_VAR	0.2			1
4	Т			REAL	BOUNDARY				1
5	V	volts		REAL	BOUNDARY				1
6	f			REAL	DATA_VAR	0.004			1
7	1	amp		REAL	EXPLICIT				1
8	k1			REAL	DATA_VAR	0.006			
9	k2			REAL	DATA_VAR	0.0 Hie Lot Ve	w Toola Window Halp		
10	omega	rad/min		REAL	DYNAMIC	Wohanno CURSO	1	· Decerated automatical	ly by - Ec
11	omega'			REAL	DERIVATIVE	A RECTICAL E	XAMPLES C	AND HYDRAULIC VERSION "D	-07
			3			MATH MODILOS MOTOR PRRTS_LIN		Simple hydraulie circui	t example

Number of equations:	2
Number of boxes (coupled subsystems of equations):	0
Number of linear boxes:	0
Number of nonlinear boxes:	0
Number of EXPLICIT variables:	1
Number of DERIVATIVE variables:	1
Number of ALGEBRAIC variables:	0
EXPLICIT + DERIVATIVE + ALGEBRAIC variables:	2
Number of BOUNDARY variables:	2
Size of Jacobian matrix (DYNAMIC+ALGEBRAIC):	1x1
Sparsity factor in Jacobian matrix (% of zeros):	0
Default integration method:	DASSL

Note 3: In equations 'E' means explicit, 'I' implicit, 'L' linear,, 'F' function

SORTED EQUATIONS:

###eqts

[2] i = (V - k2 * omega) / R {E@i@@} [1] omega' = (k1 * i - f * omega - T) / J {E@omega'@@}

End of document: TEST.motor_cc.+t+v

- Terminology for Equations/Variable matrix:
- X: Variable used in equation
- E: Explict variable

GENERAL STATISTICS

- A: Algebraic variable
- L: Variable solved linearly
- O: Calculated as output of a function or SEQUENTIAL block
- NOTE: Some internal equations are not presented (typically with variables ended in ".")

Ħ

EQUATIONS/VARIABLES MATRIX:

TYPE OF VARIABLES

 TYPE
 VARIABLE
 DATA
 CONSTANT

 REAL
 5
 6
 0

 INTEGER
 0
 0
 0

 STRING
 0
 0
 0

0

GLOBAL FLAGS:

0

TABLE

FLAG	VALUE
Remove derivatives	FALSE

BOUNDARIES:

JACOBIAN INDEPENDENT VARIABLES:

0

POS VARIABLE CATEGORY UNITS DESCRIPTION
1 omega DYNAMIC rad/min velocidad angular (rad/min)

 Will
 Total Constraint By Service Line

 Will Here
 Forestand

 Will Here
 Forestand

INITIAL CLOSURE EQUATION

omega'=0

Types of variables of a partition

Explicit	
$i = (V + k_2 \omega) / R$	
$\omega' = \frac{d\omega}{dt} = (k_1 i - f\omega - T) / J$ Dynamic	VARI <u> NUM</u> 1 2 3 4
	5 6 7

Derivative

Boundaries

	DIA DI	
VA		
v 🔿	nno	LLO.

NUM	NAME	UNITS	EQUIV-TO	TYPE	MATH-TYPE	INITIAL	LRANGE	RRANGE
1	J			REAL	DATA_VAR	0.001		
2	L	Н		REAL	DATA_VAR	0.01		
3	R	ohmios		REAL	DATA_VAR	0.2		
4	Т			REAL	BOUNDARY			
5	V	volts		REAL	BOUNDARY			
6	f			REAL	DATA_VAR	0.004		
7	1	amp		REAL	EXPLICIT			
8	k1			REAL	DATA_VAR	0.006		
9	k2			REAL	DATA_VAR	0.055		
10	omega	rad/min		REAL	DYNAMIC			
11	omega'			REAL	DERIVATIVE			

Sa

Creating an experiment

Executing an experiment

Integration methods

$$\frac{dx}{dt} = f(x, y, u)$$
$$0 = g(x, y, u)$$

Or with implicit equations where it is not possible to solve dx/dt in terms of the remaining variables

$$F(\frac{dx}{dt}, x, u, t) = 0$$

$$F(\frac{dx}{dt}, x, t) = 0$$

Implicit DAE equations can be solved approximating the derivatives by BDF formulas of variable order and solving the resulting non-linear implicit equation in x(t+h) with the Newton-Raphson method. The procedure is initialized by means of extrapolation.

$$F(\frac{x(t+h) - old(x(t))}{h}, x(t+h), t+h) = 0$$

Variable order approximation of dx/dt (BDF 1 to 5) and variable step-size h in order to bound the integration error.

EcosimPro

THE FROOSIS 3.4	1 Options		
	General Appearance Compiler Simulation Source Code Control	Nex	Case sensitive 🔲 Whole word 📄 Find in Output
	GENERAL OPTIONS		
Workspace	Configuration file location		
DYNAMIC	C:/Programas/PROOSIS_3.4/config/		
Library	Library management		
🗰 GAS_EXAM	Detect obsolete items when compiling		
🗰 lenzing	EL code generation for schematic compilation	CosimPro 4.4.0 - [C.\Ecosim4\TEST\experiments\motor_cc.+t+v\exp1\	xp1 log html] ∂
MATH	Generate an EL source code file when a schematic is compiled] _ ≥ = ≤ × - ≤ • € # [= []	Like De Code View
	Settings used in default partitions and new partitions	CONTROL	\mathbf{T}
MA DISTI	Remove derivatives	ELECTRICAL EXAMPLES ELECTRICAL EXAMPLES TRACE: TRUE LOG: TRUE WARN: TF	UE POST-PROCESS: TRUE VIEW KEDOTTS -
M OPTIMIZAC	Disable automatic reduci If this flag is set, the program	HITPRAULC_EXAMPLES Begin of reading symbols table	
🔒 OPTIMIZAT	sets all derivatives to zero in	MODELOS File: C:/Ecosim4/TEST\autocode\TES MOTOR Viscobles: 13	Indor_cc.++v stab
	Remove unused variable the final model. This is equivalent to removing the	PORTS_LIB Equations: 2	
	Generate code to check derivatives from the	End of reading symbols table	
PROCESS E	Generate code to analyse the performance of the simulation		
< <u> </u>	Obfuscate C++ generated code	Begin of transie	nt 1 (TIME: 0, TSTOP: 15, CINT: 0.1, Method: DASSL, Label:
128. B	Mathematical View	transient-1)	
Files	Maximum number of equations to show equations/variables table: 50	(TIME: 0.1) Integration step 1 (TIME: 0.2) Integration step 2	
Buckboost.	Editors	[TIME: 0.3] Integration step 3	×
DepositoLir	Maximum size to use internal editor (KB): 40	Output messages	
📄 Deposito_P	Enable autofiling in the code editors	Output Experiment Find in File Files tems Pattions Experiments	
Dis_int_flas	Softings used in new experiment sected with experiment wither	M VRC defaut Control contro control control control control control control control control c	
Hopfbifurc		M VRLdefault M hibrido 1 default M	
PI.el			
TankTemp.e		→ M motor_cc.Ti ⊕- M motorcorpuertos default	
📄 TwoTanks.e		B M motorinverso.Vomega B M tablas.T_V	
TwoV.el			Ln 1, Cel 1
ball.el			
E 🔊 🕰	Reload Option File	Cancel OK	
MODELOS			Col: 15 Zoom: 100% Platform: win32_vc2010
- 💎 🗐 🗉	🖺 👩 Merr 🛜 Wi 🚺 Mi 📜 Ado 🖤 Mic 🖻 Mi	o 🕅 PRO 🔀 Micr Office 🎽 Esc	ritorio 🤌 🖁 Barras 🎽 Software 🎽 🖽 ES 🔺 🙀 🕼 📶 🛱 🛛 9:13

Write the model and check correctness (compile)

✓ Define Partition

✓ Define experiment

✓ Generate source code (C++)

✓ Compile and link

✓ Execute the experiment in a graphical environment

EL Introduction

Component

Component_def::= ABSTRACT? COMPONENT ID

(IS_A ID (,ID)*)?

- (`(` parameter_s `)')?
- (PORTS port_decl_s)?
- (DATA var_decl_s) ?
- (DECLS comp_decl_s)?
- (TOPOLOGY topology_stm_s)?
- (INIT seq_stm_s)?
- (DISCRETE discrete_stm_s)?
- (CONTINUOUS labelled_stm_s)?

END COMPONENT

Data Types

- Basic: REAL, INTEGER, BOOLEAN, STRING REAL x, y STRING str = "hello world" BOOLEAN isConnected = FALSE
 Enumerative types: ENUM chemicals = {N2, H2O, CO2, N2, O2, H2SO4 } SET_OF(chemicals) air = {N2, O2, H2O, CO2}
- SET_OF(chemicals) water = {H2O}

Arrays:

REAL v[3]
REAL w[3,6,2]
ENUM chemicals mix[2]= { H20, O2 }
STRING colors[3]= {"red","white","blue"}

Data Types

Constants: The user can declare a variable as constant, nobody can modify it afterwards. CONST REAL PI= 3.141592

```
Different scopes in EL:

LIBRARY DEFAULT_LIB

REAL i= 9 -- Global variable

COMPONENT test

DECLS

REAL v[4],y, i -- Local scope

INIT

i= DEFAULT_LIB.i + 4

y= SUM(i IN 1,4; v[i]) -- expr. scope
```


Data Types: Tables

EXPERIMENT Tinterpol ON tablas.T_V DECLS

```
TABLE_1D tabT= { {0., 1, 2, 3, 4, 5, 6, 7, 8, 9}, -- time values 
{ 0.3, 0.6, 0.7, 0.75, 1, 1.1, 1, 1.2, 1, 0.8 } -- output
```

INIT

-- State variables

```
omega = 0
```

```
i = 0
```

BOUNDS

- -- Set expressions for boundary variables: v = f(t;...)
- -- timeTableInterp use TIME as the input parameter in the table
- -- and avoid discontinuity problems between two intervals
- -- Constant after the last value

```
T = timeTableInterp(TIME, tabT)
```

V = 250

BODY

Tables

COMPONENT mastablas

. . . .

DATA

TABLE_1D tabT= { {0., 1, 2, 3, 4, 5, 6, 7, 8, 9}, -- time values {0.3, 0.6, 0.7, 0.75, 1, 1.1, 1, 1.2, 1, 0.8 } -- output

DECLS

REAL Trile

INTEGER last = 0 -- variable auxiliar para mejorar la velocidad

TABLE_1D tabF

INIT

readTableCols1D(expandFilePath("@TEST@/docs/mytable.txt"), 2, 3, tabF) CONTINUOUS

```
Tspline = splineInterp1D(tabT, TIME)
```

Tinterplast = linearInterpHist1D(tabT, TIME, last) -- no queda cte tras ultim Tinterp = linearInterp1D(tabT, TIME) -- no queda cte tras ultimo valor T = timeTableInterp(TIME, tabT) -- si queda cte tras el ultimo valor Tfile = timeTableInterp(TIME, tabF) END COMPONENT

Expressions

Arithmetic: a * 2 + (c - u) / (x * 2)SUM

x= SUM(i IN 1,3; inertia[i]) is equivalent to x= inertia[1]+inertia[2]+inertia[3] Relational: 2 > (x - y)Logical: (x > 9.8 AND n != 7 OR m == 6)

TIME contains the current integration time TSTOP contains the current final integration time

x= sin(TIME)
WHEN(TIME >= (TSTOP / 2))

Types of statements supported

- EcosimPro provides three different paradigms:
- Sequential statements like IF, WHILE, FOR, etc. The order of the statements is fundamental. Supported in Fortran, Java, C++
- Continuous statements like Differential-Algebraic equations. The order is indifferent. Used to express the dynamic behaviour of the dynamic model.
- **Discrete statements** like WHEN. The order is indifferent. Used to express the discrete behaviour of the dynamic model.

Sequential statements

They are executed in the order the user write them. Can be used in any sequential part: Assignments: x = 8Function calls: x = add(2,2)**IF-THEN-ELSE:** WHILE speed < maxSpeed IF (x > 8.3) THEN speed += 0.1y = sqrt(x)**END WHILE ELSE** y = xFOR (i IN 0,4) **ENDIF** v[i] = 0

END FOR

EXPAND: Insertion of multiple equations in one go EXPAND(i IN 1,2) out_entropy[i]= in_entropy[i]

equivalent to: (don't confuse with FOR statement!)
 out_entropy[1]= in_entropy[1]
 out_entropy[2]= in_entropy[2]
(Note: Each equation in totally independent)

EXPAND_BLOCK (i IN 1, n) mg[i] = P[i]*PM_g[i]*Vf_g/cte_R/(Tg[i]+273.15) P[i]= mg[i]*cte_R*(Tg[i]+273.15)/(PM_g[i]*Vf_g) END EXPAND_BLOCK

The user can define its own functions in EL and then call them from any component or port. FUNCTION REAL square(REAL x) BODY RETURN x * x END FUNCTION ... x= square(y)

SUM it generates a summation of elements in a given range. For example v = SUM (j iN 2,5; x[i] * alpha[2*i])generates the following equation: v = x[2]*alpha[4] + x[3]*alpha[6] + x[4]*alpha[8]

INIT / DISCR

COMPONENT reactorAB

.

.

DATA

REAL L = 3.03 "altura del reactor (m)" REAL D = 3.03 "Diametro (m)" REAL T0 = 65 "Valor inicial de T (°C)"

DECLS

```
REAL T "Temperatura (°C)"
DISCR REAL A "Superficie de transmisión de calor del encamisado (m2)"
DISCR REAL V "Volumen del reactor (m3)"
```

INIT

V = PI*D*D*L /4 -- calculo del volumen del reactor A = PI*D*L -- calculo de la superficie T = T0 Tr = 51.5

Events and Discontinuities

52

- In many processes, sharp changes take place at certain time instants, which modify the continuity of f(x,u) or its derivative.
- Such events change the model, so that f(x,u) is transformed at this time instant from f₁(x,u) to f₂(x,u)
- Variable structure models, hybrid models,....
- Under this circumstances, direct application of the previous integration methods can lead to wrong results.

Events and Discontinuities: Examples

Heating and boiling at constant pressure: $\frac{dT}{dt} = \begin{cases} I^2 R/(mc_e) & \text{if } T < T_e \\ 0 & \text{if } T \ge T_e \end{cases}$ m $\frac{dm}{dt} = \begin{cases} 0 & \text{if } T < T_e \\ -I^2 R/\lambda & \text{if } T \ge T_e \end{cases}$

Te Boiling temperature

Events and Discontinuities

$$x(t+h) = x(t) + \int_{t}^{t} f(x(\tau), u) d\tau$$

Sa

$$\frac{d x}{d t} = f_1(x, u) \quad \text{time} < t + d$$
$$\frac{d x}{d t} = f_2(x, u) \quad \text{time} \ge t + d$$

Discontinuities in ECOSIMPRO

 Discrete events
 WHEN (condition) equations
 END WHEN Language declarations that control explicitly the location of discontinuities, the model changes and the new initial conditions

 Changes in the continuous model structure x = ZONE (condition 1) equation 1 ZONE (condition 2) equation 2 OTHERS equation 3 END

□ AFTER - Delayed Assignation

DATA REAL Tmin = 20REAL Tmax = 50. DECLS **REAL HeaterPower** REAL T = 10. DISCRETE WHEN (T < Tmin) THEN HeaterPower = 50. **END WHEN** WHEN (T > Tmax) THEN HeaterPower = 0. **END WHEN CONTINUOUS** T' = 0.1 * (HeaterPower - 10)**COMPONENT**

Sa

COMPONENT WhenExample
DATA
REAL $Tmin = 20$
REAL $Tmax = 50$
DECLS
REAL HeaterPower REAL T = 10. HeatPower $R > T$
DISCRETE WHEN (T < Tmin) THEN
HeaterPower = 50 . AFTER 5 END WHEN
WHEN (T > Tmax) THEN HeaterPower = 0. AFTER 2 END WHEN
CONTINUOUS
T' = 0.1 * (HeaterPower - 10)
END COMPONENT


```
--Limitation of a variable
COMPONENT Limits_0
      DECLS
            REAL x
            REAL xmax
REAL xmin
            REAL Y
      CONTINUOUS
            xmax = 0.5 + 0.2 * sin(TIME)
xmin = -0.5 - 0.2 * sin(2 * TIME)
x = sin(3*TIME)
                 = ZONE (x > xmax ) xmax
ZONE (x < xmin ) xmin
OTHERS x
            У
END COMPONENT
```


Construction Parameters IF INSERT

Sa

Loop Tearing

- Direct solution of an algebraic loop using Newton-Raphson method leads to an algorithm with a size of the Jacobian as large as the number of variables involved in the loop.
- The use of Equation Tearing techniques allows sustantial reductions of the size of the Jacobian

Some tearing variables are selected, so that, if given an initial value, it is possible to compute explicitly the remaining variables of the loop. As the initial value may be wrong, there will be as many equations of the loop as tearing variables that will not compute equal to zero (residual equations). The Newton- Raphson algorithm will iterate modifying the tearing variables until the residual equations are satisfied, but with a reduced Jacobian size. $F_1(x_1, x_2) = 0$ $F_2(x_1, x_2, x_3) = 0$ $F_3(x_1, x_2, x_3) = 0$

x₂ selected as tearing variable

$$x_1 = f_1(x_2)$$

 $x_3 = f_2(x_1, x_2)$
 $F_3(x_1, x_2, x_3) = residual$

Algebraic Loops

A non-linear al This wizard helps y	ALGEBRAIC WIZARD gebraic equation system (a non-linear box) has been detected. ou to select the minimum set of algebraic variables to solve this box
Algebraic variables Boxes : 2 Box : 2 Name Description	Non-linear box variables Categories : Suggested Select Filter : *
Equivalent variables :	Unselect > Equivalent variables :

- Each module contains the mathematical model of a particular subsystem
- Each module is connected to the others through an interface or port

R2

BUT the model equations are generated later on for the whole system taking into account the boundary conditions and associated constraints. High level description.

Model libraries

Facilitate the re-use of models
There are based in the following principles:
Modularity: Independent description of each module
Abstraction: Every module can be used through its interface with no need to know details of its internal structure

✓ Hierarchy✓ Genericity

EcosimPro: Object oriented Modelling

 $(\mathbf{0})$

PORT mech_rot "1D rotational flange"

SUM REALTUNITS u_Nm"Torque"EQUAL REALomegaUNITS u_rad_s"Absolute angular velocity"REALnUNITS u_rpm"Angular velocity"

CONTINUOUS omega = n * (2*MATH.PI/60)

END PORT

DC Motor with Ports

USE MATH USE PORTS_LIB

... CONTINUOUS

 $J^*w' = K^{*i} - f^*w - T$ $V = R^{*i} + Ke^*w$ feed.i = ground.i feed.i = i V = feed.v - ground.veje.T = T eje.omega = w

END COMPONENT

Ports

PORT Gas

SUM	REAL		W	RANGE	Ο,	Inf	"Mass Flow (Kg/s)"
EQUAL	REAL		Ρ	RANGE	Ο,	Inf	"Pressure (Pa)"
EQUAL	OUT	REAL	Н =	700000			"Enthalpy (J/Kg)"
EQUAL	OUT	REAL	FAR				"Fuel Air Ratio"
SUM		REAL	WF				"Fuel Flow (Kg/s)"
SUM	IN	REAL	WH				"Energy Flow (W)"
		REAL	т =	= 500.			"Temperature (K)"

CONTINUOUS

т	=	T_H_FAR(H, FAR)
WH	=	W * H
WF	=	(FAR / (1 + FAR)) * W

Additional equations are generated automatically according to the connections of the port

END PORT

EQUAL OUT / SUM IN

- Transport Variables:
 - Temperature and Concentrations are very special variables, they travel with the fluid.
 - In case of flow splitting, the temperatures of the leaving flows are equal to the inlet temperature
 - In case of flow merging, the temperature of the leaving flow is the mass flow weighted average of the inlet temperatures:

Adding the auxiliary modifiers IN or OUT to SUM or EQUAL. It means that a variable will have the SUM or EQUAL behaviour only if the port has the same direction as the auxiliary modifier. If not, the connecting equation is not generated. Example:

PORT fluid "fluid port" SUM REAL w EQUAL REAL p SUM IN REAL E EQUAL OUT REAL T CONTINUOUS

"mass flow" "pressure" "energy flow" "temperature"

E = w * T

END PORT

Multiple input port

Connecting Eqts:	CONTINUOUS	Eqts:
P.w = P1.w + P2.w	P1.E = P1.w	* P1.7
P.p = P1.p = P2.p	P2.E = P2.w	* P2.7
P.T = P1.T = P2.T	P.E = P.w	* P.T

Con	ne	cting	E	qts:
P.w	=	P1.w	+	P2.w
P.p	=	P1.p	=	P2.p
P.E	=	P1.E	+	P2.E

CONT	FINUOU	S Ec	its:
P1.E	= P1.	w *	P1.T
P2.E	= P2.	w *	P2.T
P.E	= P.	w *	P.T

CONT	ΓIN	UOUS	Εc	įts:
P1.E	=	P1.w	*	P1.T
P2.E	=	P2.w	*	P2.T
P.E	=	P.w	*	P.T

Modelling Languages

Component LowPassFilter

 $\begin{array}{c} R1 & e_out \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ G1 \end{array}$

Electric Port

PORT Elec

SUM	REAL	I.	corriente
EQUAL	REAL	V	tension

COMPONENT LowPassFilter PORTS IN Elec e_in OUT Elec e_out DATA REAL Zin=1000 -- Inlet Impedance REAL fc=100 -- Cut Frequency

TOPOLOGY

Resistor R1 (R=Zin) Capacitor C1 (C= 1 / (Zin * 2 * PI * fc))Ground G1

CONNECT e_in TO R1 TO C1 TO G1 CONNECT R1 TO e_out

END COMPONENT

BODY

Modelling Languages

Component LowPassFilter

Working with graphical libraries

Sa

Sa

Bidirectional flow

Sa

Sometimes the process model are formulated with algebraic equations that constraint the state variables

$$\frac{dx_1}{dt} - f_1(x_1, x_2, u) = 0 \qquad \frac{dx_2}{dt} - f_2(x_1, x_2, u) = 0$$
$$g(x_1, x_2) = 0$$

These constraints does not appear in the ODE format and are not considered in the integration methods

High index problems

High index problems can appear as the result of joining together components of a model library due to the bounding equations of the ports.

Example: Pendulum

The model could be described also in polar coordinates with only two state variables

They also may appear due to modelling approaches that include non minimum number of state variables

It is possible to reduce a system with links among its state variables to an equivalent ODE one using the Pantelides algorithm, which differentiates n times the state constraint equations.

 $\frac{dx_1}{dt} - f_1(x_1, x_2, u) = 0 \qquad \frac{dx_2}{dt} - f_2(x_1, x_2, u) = 0$ $g(x_1, x_2) = 0$

Index of a DAE system: Number of times that the state constraint equations must be differentiated in order to convert the DAE system into an equivalent ODE one.

Example: Pendulum (index 2)

1 Solving the sub-set of equations:

2 Solving the remaining variables with:

$$m\frac{dv_x}{dt} = -F\frac{x}{L} \qquad \frac{dx}{dt} = v_x \qquad y = \sqrt{L^2 - x^2} \qquad v_y = -\frac{xv_x}{y} \qquad \frac{dv_y}{dt} = \frac{-1}{y} \left[-x\frac{Fx}{mL} + v_x^2 + v_y^2 + v_y^2 \right]$$

High Index

COMPONENT Fuerza

DATA REAL m = 2 DECLS REAL F REAL v REAL x

> F = m * v'and x'= v $x = \exp(-TIME/10) * \sin(TIME)$

State variables need explicit time expressions to be used as boundaries and create index problems

END COMPONENT

High index

This wizard helps you to remove dynamic variables	from the equation system by deriving some equations (if possible) Partition dynamic variables
High Index Problem 1 Pending 0 0 of 3 Name Description Capacitor1.e_p.v Potential at pin Capacitor1.v Voltage drop between the two pins Ground1.e p.v Potential at pin Equivalent variables :	<pre> Select Filter : * Name Description Capacitor2.v Voltage drop between the two pins = e Equivalent variables : Unselect > Unselect All >> Capacit Capaci</pre>