s2

Introduction to EcosimPro

www.ecosimpro.com

Simulation languages

- Advantages:
- Provide support in all phases of model development and exploitation
- Allow the user focusing the attention in the problem and not in the programming
- Allow saving time
- Provide confidence in the results obtained
- Open the field to non-experts in modelling or computing and to the use of models in other fields

Key steps and concepts

\checkmark Process represented by a mathematical model $V-R * I=0$
\checkmark Specify the aims of the simulation (which variables are known, boundary conditions, and which ones must be computed): Example: I is known, voltage drop V wish to be computed
\checkmark Formulate the mathematical model according to the aims (Assign computational causality, create a partition) $\mathrm{V}=\mathrm{I} * \mathrm{R}$
\checkmark Specify an experiment (Give values to the parameters and boundary conditions) $\mathrm{R}=10, \mathrm{I}=2$
\checkmark Solve the equations and display the results $\mathrm{V}=10 * 2=20$

Modelling languages

- Software tools that facilitate:
- The description of a process model and the assignment of computational causality
- The description of the experiments to be performed
- Solving the equations
- Displaying results
- Provide other functionalities (optimization, parameter estimation, validation,...)

EcosimPro

\checkmark First version 1992, Unix, ESA
\checkmark First version under Windows: 1999
\checkmark Object oriented tool
\checkmark Support continuous, discrete and discrete event processes
\checkmark Models are built by textual description of from graphical libraries.
\checkmark Provides a software development environment
\checkmark Open code, C++, ActiveX, OPC,...
\checkmark Version 5, 2013, multiplatform QT
\checkmark Proosis

EcosimPro environment

Libraries /Workspaces

Models

Graphical environment

Basic elements

\checkmark COMPONENT: Represents a model. Includes data, variables, equations, events, topology,...
\checkmark PORT Defines the link of a component with the outside world. It plays the role of electrical connections, pipes, etc. that appear in the real world connecting elements.
\checkmark EXPERIMENT: Defines how to perform a simulation, giving values to data, boundary conditions, etc.
\checkmark LIBRARY: Set of files with ports, components, functions, etc. that belong to a certain field (e.g. CONTROL, ELECTRICAL, THERMAL, etc.) and can be used to define other components.

EcosimPro Environment

\checkmark Creating a Workspace / library
\checkmark Models described in Components
\checkmark Components can be linked by ports
\checkmark Editing a component. Example: a D.C. motor

$$
\begin{aligned}
& J \frac{d \omega}{d t}=k i-f \omega-T \\
& V=R i+k_{e} \omega
\end{aligned}
$$

Creating a component in a

Library

Declarative equations. They will be manipulated symbolically according to

REAL T
"Torque"
REAL w
"Momentum
of inertia"
REAL K = 3 "torque
constant"
REAL $f=0.01 \quad$ "friction
coefficient
REAL R = 0.1 "electrical
resistance"
REAL Ke = 0.5
DECLS

REAL V
"voltage"
REAL i
"current"

Compiling

COMPONENT motorDC

DATA

Analysing the correctness
of the model from the point of view of the EL language

REAL $\mathrm{J}=2$ "Momentum of
inertia"
REAL K = 3 "torque constant"
REAL $\mathrm{f}=0.01$ "friction
coefficient
REAL R = 0.1 "electrical resistance"

REAL Ke = 0.5
DECLS
REAL T
REAL w
REAL v
REAL i
CONTINUOUS

$$
\begin{aligned}
& \quad \mathbf{J}{ }^{*} \mathbf{w}^{\prime}=\mathbf{K} * \mathbf{i}-\mathbf{f} * \mathbf{w}-\mathbf{T} \\
& \mathbf{v}=\mathbf{R}^{*} \mathbf{i}+K \mathbf{K}^{*} \mathbf{w} \\
& \text { END COMPONENT }
\end{aligned}
$$

Partitions

- A partition is a math model associated to a process ready to define experiments on it.
- When there are more variables than equations the user should define the boundary conditions and, sometimes, solve problems related with high index and algebraic loops
$J \frac{\mathrm{~d} \omega}{\mathrm{dt}}=\mathrm{k}_{1} \mathrm{i}-\mathrm{f} \omega-\mathrm{T}$
$\mathrm{V}-\mathrm{Ri}+\mathrm{k}_{2} \omega=0$

Boundary conditions, e.g.: Applied voltage V and external torque T

Why partitions?

The mathematical formulation of the equations depends on the

Same physical element and law context

$$
\mathrm{p}_{2}
$$

If p_{1} and p_{2} are given:

If p_{1} and q are given:

$$
\mathrm{q}=\mathrm{k} \mathrm{p}_{1}-\mathrm{p}_{2}
$$

Aim: Making the model of a process independent of its use in a particular situation

Creating a partition

Viewing a partition
 GENERAL STATISTICS

Types of variables of a partition

Explicit
Boundaries
$\mathrm{i}=\left(\mathrm{V}+\mathrm{k}_{2} \omega\right) / \mathrm{R}$
$\omega^{\prime}=\frac{\mathrm{d} \omega}{\mathrm{dt}}=\left(\mathrm{k}_{1} \mathrm{i}-\mathrm{f} \omega-\mathrm{T}\right) / \mathrm{J}$
Dynamic
Derivative

VARIABLES:
NUM NAME UNITS EQUIV-TO TYPE MATH-TYPE INITIAL LRANGE RRANGE

1	J			REAL	DATA_VAR	0.001		
2	L	H		REAL	DATA_VAR	0.01		
3	R	ohmios		REAL	DATA_VAR	0.2		
4	T			REAL	BOUNDARY			
5	V	volts		REAL	BOUNDARY			
6	f			REAL	DATA_VAR	0.004		
7	l	amp		REAL	EXPLICIT			
8	k 1			REAL	DATA_VAR	0.006		
9	k 2			REAL	DATA_VAR	0.055		
10	omega	$\mathrm{rad} / \mathrm{min}$		REAL	DYNAMIC			
11	omega'			REAL	DERIVATIVE			

Creating an experiment

Executing an experiment

Integration methods

DAE systems

- Many problems are formulated in terms of coupled differential and algebraic equations (DAE)

$$
\begin{aligned}
& \frac{d x}{d t}=f(x, y, u) \\
& 0=g(x, y, u)
\end{aligned}
$$

Or with implicit equations where it is not possible to solve $\mathrm{dx} / \mathrm{dt}$ in terms of the remaining variables

$$
F\left(\frac{d x}{d t}, x, u, t\right)=0
$$

Integration: DASSL, IDAS

$$
F\left(\frac{\mathrm{dx}}{\mathrm{dt}}, \mathrm{x}, \mathrm{t}\right)=0
$$

Implicit DAE equations can be solved approximating the derivatives by BDF formulas of variable order and solving the resulting non-linear implicit equation in $\mathrm{x}(\mathrm{t}+\mathrm{h})$ with the Newton-Raphson method. The procedure is initialized by means of extrapolation.

$$
F\left(\frac{x(t+h)-o \operatorname{old}(x(t))}{h}, x(t+h), t+h\right)=0
$$

Variable order approximation of $\mathrm{dx} / \mathrm{dt}$ (BDF 1 to 5) and variable step-size h in order to bound the integration error.

EcosimPro

Steps

\checkmark Write the model and check correctness (compile)
\checkmark Define Partition
\checkmark Define experiment
\checkmark Generate source code (C++)
\checkmark Compile and link
\checkmark Execute the
experiment in a graphical environment

EL Introduction

COMPONENT Cntrl_on_off IS_A Controller

Parent Component

 DATAREAL e_off =-1. "Error for switching to OFF state"
REAL e_on =1. "Error for switching to ON state"
REAL u_off $=0$. "Value of controller output when OFF"

Data

REAL u_on $=1$. "Value of controller output when ON"
DECLS
ENUM state_type = \{OFF, ON $\}$
Local declarations ENUM state_type state "Current state"

DISCRETE

WHEN (e > e_on) THEN state $=\mathrm{ON}$
END WHEN

WHEN (e < e_off) THEN

```
        state = OFF
```

END WHEN
CONTINUOUS
$\mathrm{u}=$ ZONE (state $==\mathrm{ON}$) $\mathrm{u} _$on

Continuous equations

OTHERS u_off

END COMPONENT

Component

Component_def::= ABSTRACT? COMPONENT ID (IS_A ID (,ID)*)? ('(' parameter_s ')')? (PORTS port_decl_s)? (DATA var_decl_s) ?
(DECLS comp_decl_s)?
(TOPOLOGY topology_stm_s)?
(INIT seq_stm_s)?
(DISCRETE discrete_stm_s)?
(CONTINUOUS labelled_stm_s)?
END COMPONENT

Data Types

- Basic: REAL, INTEGER, BOOLEAN, STRING REAL x, y
STRING str = "hello world"
BOOLEAN isConnected = FALSE
- Enumerative types:

ENUM chemicals $=\{\mathrm{N} 2, \mathrm{H} 2 \mathrm{O}, \mathrm{CO} 2, \mathrm{~N} 2, \mathrm{O} 2, \mathrm{H} 2 \mathrm{SO} 4\}$ SET_OF(chemicals) air = \{N2, O2, H2O, CO2\} SET_OF(chemicals) water $=\{\mathrm{H} 2 \mathrm{O}\}$

Arrays:
REAL v[3]
REAL w[3,6,2]
ENUM chemicals mix[2]=\{ H20, O2 $\}$
STRING colors[3]= \{"red","white","blue"\}

Data Types

Constants: The user can declare a variable as constant, nobody can modify it afterwards.

CONST REAL PI= 3.141592
Different scopes in EL:
LIBRARY DEFAULT_LIB
REAL $\mathrm{i}=9$-- Global variable
COMPONENT test
DECLS
REAL v[4],y, i -- Local scope
INIT
i= DEFAULT_LIB.i + 4
y= SUM(i IN 1,4; v[i]) -- expr. scope

Data Types: Tables

EXPERIMENT Tinterpol ON tablas.T_V
DECLS

$$
\begin{aligned}
\text { TABLE_1D tabT }= & \{\{0 ., 1,2,3,4,5,6,7,8,9\}, \quad-\text { - time values } \\
& \{0.3,0.6,0.7,0.75,1,1.1,1,1.2,1,0.8\}\}- \text { output }
\end{aligned}
$$

INIT

-- State variables

$$
\text { omega }=0
$$

$$
i=0
$$

BOUNDS
-- Set expressions for boundary variables: $v=f(t ; \ldots)$
-- timeTableInterp use TIME as the input parameter in the table
-- and avoid discontinuity problems between two intervals
-- Constant after the last value

T = timeTableInterp(TIME, tabT)
$V=250$
BODY

Tables

COMPONENT mastablas

DATA

TABLE_1D $\operatorname{tabT}=\{\{0 ., 1,2,3,4,5,6,7,8,9\}, \quad-$ time values

$$
\{0.3,0.6,0.7,0.75,1,1.1,1,1.2,1,0.8\}\}- \text { output }
$$

DECLS

REAL Tfile
INTEGER last $=0$-- variable auxiliar para mejorar la velocidad TABLE_1D tabF

INIT

readTableCols1D(expandFilePath("@TEST@/docs/mytable.txt"), 2, 3, tabF)

CONTINUOUS

Tspline $=$ splineInterp $1 \mathrm{D}($ tabT, TIME $)$
Tinterplast $=$ linearInterpHist1D (tabT, TIME, last) - no queda cte tras ultim
Tinterp $=$ linearInterp1D (tabT, TIME) -- no queda cte tras ultimo valor $\mathrm{T}=$ timeTableInterp(TIME, tabT) -- si queda cte tras el ultimo valor
Tfile $=$ timeTableInterp $($ TIME, tabF $)$

Expressions

Arithmetic: a*2 + (c - u) / ($\mathrm{x}^{* * 2}$)
SUM
x= SUM(i IN 1,3; inertia[i])
is equivalent to $\mathrm{x}=$ inertia[1]+inertia[2]+inertia[3]
Relational: $2>(\mathrm{x}-\mathrm{y})$
Logical: $(x>9.8$ AND $n!=7$ OR $m==6)$

TIME contains the current integration time TSTOP contains the current final integration time

```
x= sin(TIME)
WHEN(TIME >= (TSTOP / 2 ))
```


Types of statements supported

\checkmark EcosimPro provides three different paradigms:

- Sequential statements like IF, WHILE, FOR, etc. The order of the statements is fundamental. Supported in Fortran, Java, C++
- Continuous statements like Differential-Algebraic equations. The order is indifferent. Used to express the dynamic behaviour of the dynamic model.
- Discrete statements like WHEN. The order is indifferent. Used to express the discrete behaviour of the dynamic model.

Sequential statements

They are executed in the order the user write them. Can be used in any sequential part:
Assignments: $\mathrm{x}=8$
Function calls: $x=\operatorname{add}(2,2)$
IF-THEN-ELSE:
IF ($x>8.3$) THEN
$y=\operatorname{sqrt}(x)$
ELSE
$y=x$
ENDIF
WHILE speed < maxSpeed speed $+=0.1$
END WHILE
FOR (i IN 0,4)
$\mathrm{v}[\mathrm{i}]=0$
END FOR

EXPAND / EXPAND_BLOCK

EXPAND: Insertion of multiple equations in one go EXPAND(i IN 1,2) out_entropy[i]= in_entropy[i]
equivalent to: (don't confuse with FOR statement!) out_entropy $[1]=$ in_entropy $\left[\begin{array}{l}1 \\ \text { out_entropy }[2] \\ 2\end{array}\right]$
(Note: Each equation in totally independent)

EXPAND_BLOCK (i IN 1, n)

$$
\operatorname{mg}[i]=\mathrm{P}[\mathrm{i}] * P M_{-g}[\mathrm{i}] * V f _g / \mathrm{cte} _\mathrm{R} /(\mathrm{Tg}[\mathrm{i}]+273.15)
$$

$$
\mathrm{P}[\mathrm{i}]=\mathrm{mg}[\mathrm{i}] * \text { cte_R*}(\mathrm{Tg}[\mathrm{i}]+273.15) /\left(\mathrm{PM} _\mathrm{g}[\mathrm{i}] * \mathrm{Vf} _\mathrm{g}\right)
$$

END EXPAND_BLOCK

Functions

The user can define its own functions in EL and then call them from any component or port.
FUNCTION REAL square(REAL x)
BODY
RETURN x * x
END FUNCTION
$x=$ square (y)
SUM
it generates a summation of elements in a given range. For example

$$
\mathrm{v}=\operatorname{SUM}(\mathrm{j} \text { iN 2,5; x[i] * alpha[2*i]) }
$$

generates the following equation:

INIT / DISCR

COMPONENT reactorAB
DATA
REAL L $=3.03$ "altura del reactor (m) "
REAL D $=3.03$ "Diametro (m)"
REAL T0 $=65$ "Valor inicial de $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)^{\text {" }}$

DECLS

REAL T "Temperatura $\left({ }^{\circ} \mathrm{C}\right)$ "
DISCR REAL A "Superficie de transmisión de calor del encamisado (m2)" DISCR REAL V "Volumen del reactor (m3)"

INIT

$$
\begin{array}{ll}
\mathrm{V}=\mathrm{PI} * \mathrm{D} * \mathrm{D} * \mathrm{~L} / 4 & - \text { calculo del volumen del reactor } \\
\mathrm{A}=\mathrm{PI}^{*} \mathrm{D} * \mathrm{~L} & - \text { calculo de la superficie } \\
\mathrm{T}=\mathrm{T} 0 & \\
\mathrm{Tr}=51.5 &
\end{array}
$$

Events and Discontinuities

- In many processes, sharp changes take place at certain time instants, which modify the continuity of $\mathrm{f}(\mathrm{x}, \mathrm{u})$ or its derivative.
- Such events change the model, so that $f(x, u)$ is transformed at this time instant from $f_{1}(x, u)$ to $\mathrm{f}_{2}(\mathrm{x}, \mathrm{u})$
- Variable structure models, hybrid models,....
- Under this circumstances, direct application of the previous integration methods can lead to wrong results.

Events and Discontinuities: sa Examples

- Heating and boiling at constant pressure:

$$
\begin{aligned}
& \frac{\mathrm{dT}}{\mathrm{dt}}= \begin{cases}\mathrm{I}^{2} \mathrm{R} /\left(\mathrm{mc} \mathrm{c}_{e}\right) & \text { if } \mathrm{T}<\mathrm{T}_{e} \\
0 & \text { if } \mathrm{T} \geq \mathrm{T}_{e}\end{cases} \\
& \frac{\mathrm{dm}}{\mathrm{dt}}= \begin{cases}0 & \text { if } \mathrm{T}<\mathrm{T}_{e} \\
-\mathrm{I}^{2} \mathrm{R} / \lambda & \text { if } \mathrm{T} \geq \mathrm{T}_{e}\end{cases}
\end{aligned}
$$

Te Boiling temperature

Events and Discontinuities

$x(t+h)=x(t)+\int_{t}^{t+h} f(x(\tau), u) d \tau$

$$
\begin{array}{ll}
\frac{d x}{d t}=f_{1}(x, u) & \text { time }<t+d \\
\frac{d x}{d t}=f_{2}(x, u) & \text { time } \geq t+d
\end{array}
$$

Discontinuities in ECOSIMPRO ${ }^{\text {s2 }}$

- Discrete events

WHEN (condition) equations
END WHEN

Language declarations that control explicitly the location of discontinuities, the model changes and the new initial conditions

- Changes in the continuous model structure
$x=$ ZONE (condition 1) equation 1 ZONE (condition 2) equation 2
OTHERS equation 3
END
a AFTER - Delayed Assignation

WHEN

COMPONENT WhenExample

DATA

$$
\text { REAL Tmin = } 20
$$

$$
\text { REAL Tmax = } 50 .
$$

DECLS
REAL HeaterPower REAL T = 10 .
DISCRETE
HeatPower

HeaterPower $=50$.
END WHEN
WHEN (T > Tmax) THEN
HeaterPower $=0$.

END WHEN

CONTINUOUS

$$
\mathrm{T}^{\prime}=0.1 \text { * (HeaterPower - 10) }
$$

END COMPONENT

AFTER

```
COMPONENT WhenExample
    DATA
        REAL Tmin \(=20\)
        REAL Tmax \(=50\)
    DECLS
    REAL HeaterPower
    REAL \(\mathrm{T}=10\).
```

HeatPower

DISCRETE

```
WHEN (T < Tmin) THEN
\[
\text { HeaterPower }=50 . \text { AFTER } 5
\]
END WHEN
WHEN (T > Tmax) THEN
HeaterPower = 0. AFTER 2
END WHEN
CONTINUOUS
\[
T^{\prime}=0.1 * \text { (HeaterPower - 10) }
\]
END COMPONENT
```


ZONE

--Limitation of a variable
COMPONENT Limits_0

DECLS

REAL \times
REAL xmax
REAL xmin
REAL y
CONTINUOUS

END COMPONENT

Construction Parameters IF INSERT

COMPONENT tinsert (INTEGER sw = 1) DECLS

REAL x
REAL y
CONTINUOUS
IF ($\mathrm{sw}==1$) INSERT

$$
3 * x-6 * y=9
$$

$$
4 * x-4 * y=9
$$

ELSE

$$
5^{*} x+7.6^{*} y=9.5
$$

$$
4.34 * x-64 * y=86.4
$$

END IF
END COMPONENT

Loop Tearing

\checkmark Direct solution of an algebraic loop using Newton-Raphson method leads to an algorithm with a size of the Jacobian as large as the number of variables involved in the loop.
\checkmark The use of Equation Tearing techniques allows sustantial reductions of the size of the Jacobian

Some tearing variables are selected, so that, if given an initial value, it is possible to compute explicitly the remaining variables of the loop. As the initial value may be wrong, there will be as many equations of the loop as tearing variables that will not compute equal to zero (residual equations). The Newton- Raphson algorithm will iterate modifying the tearing variables until the residual equations are satisfied, but with a reduced Jacobian size.

$$
\begin{aligned}
& \mathrm{F}_{1}\left(\mathrm{x}_{1}, x_{2}\right)=0 \\
& \mathrm{~F}_{2}\left(\mathrm{x}_{1}, x_{2}, x_{3}\right)=0 \\
& \mathrm{~F}_{3}\left(\mathrm{x}_{1}, x_{2}, x_{3}\right)=0
\end{aligned}
$$

x_{2} selected as tearing variable

$\mathrm{x}_{1}=\mathrm{f}_{1}\left(\mathrm{x}_{2}\right)$
$x_{3}=f_{2}\left(x_{1}, x_{2}\right)$
$\mathrm{F}_{3}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=$ residual

Algebraic Loops

Name: default

Building models

- A model can be composed linking predefined and tested modules
- Each module contains the mathematical model of a particular subsystem
- Each module is connected to the others through an interface or port

R2

- BUT the model equations are generated later on for the whole system taking into account the boundary conditions and associated constraints. High level description.

Model libraries

Facilitate the re-use of models
There are based in the following principles:
\checkmark Modularity: Independent description of each module
\checkmark Abstraction: Every module can be used through its interface with no need to know details of its internal structure
\checkmark Hierarchy
\checkmark Genericity
EcosimPro:
Object oriented
Modelling

Ports

Component

Electrical Port Name

PORT Elec

SUM REAL c "current (Amperes)" EQUAL REAL v "voltage (Volts)" END PORT

Ports

PORT mech_rot "1D rotational flange"

$$
\begin{array}{lcl}
\text { SUM REAL } & \text { T } & \text { UNITS u_Nm "Torque " } \\
\text { EQUAL REAL omega } & \text { UNITS u_rad_s "Absolute angular velocity" } \\
\text { REAL } & n & \text { UNITS u_rpm "Angular velocity" }
\end{array}
$$

CONTINUOUS

$$
\text { omega }=\mathrm{n} *(2 * \mathrm{MATH} . \mathrm{PI} / 60)
$$

END PORT

DC Motor with Ports

Ports

PORT Gas

CONTINUOUS

$$
\begin{aligned}
& T=T _H _F A R(H, F A R) \\
& W H=W * H \\
& W F=(F A R /(1+F A R)) * W
\end{aligned}
$$

END PORT

> Additional equations are generated automatically according to the connections of the port

EQUAL OUT / SUM IN

- Transport Variables:
- Temperature and Concentrations are very special variables, they travel with the fluid.
- In case of flow splitting, the temperatures of the leaving flows are equal to the inlet temperature
- In case of flow merging, the temperature of the leaving flow is the mass flow weighted average of the inlet temperatures:

Adding the auxiliary modifiers IN or OUT to SUM or EQUAL. It means that a variable will have the SUM or EQUAL behaviour only if the port has the same direction as the auxiliary modifier. If not, the connecting equation is not generated. Example:

PORT fluid "fluid port"

SUM REAL w EQUAL REAL p SUM IN REAL E EQUAL OUT REAL T CONTINUOUS

$$
E=w * T
$$

END PORT

$$
\begin{aligned}
& \text { "mass flow" } \\
& \text { "pressure" } \\
& \text { "energy flow" } \\
& \text { "temperature" }
\end{aligned}
$$

Multiple output port	Connecting Eqts:	CONTINUOUS Eqts:
P1	P.w $=$ P1.w + P2.w	P1.E = P1.w * P1.T
	P.p $=$ P1.p $=$ P2.p	P2.E $=$ P2.W * P2.T
	P.T $=$ P1.T $=$ P2.T	P.E = P.T * P.T
Multiple input port	Connecting Eqts:	CONTINUOUS Eqts:
P1	P. $\mathrm{w}=\mathrm{P} 1 . \mathrm{W}+\mathrm{P} 2 . \mathrm{w}$	P1.E = P1.w * P1.T
	$\mathrm{P} . \mathrm{p}=\mathrm{P} 1 . \mathrm{p}=\mathrm{P} 2 . \mathrm{p}$	P2.E $=$ P2.W * P2.T
P2	P.E = P1.E + P2.E	P.E = P.W * P.T

Modelling Languages

Electric Port

COMPONENT LowPassFilter
PORTS
IN Elec e_in
OUT Elec e_out
DATA
REAL Zin=1000 -- Inlet Impedance
REAL fc=100 -- Cut Frequency
TOPOLOGY
Resistor R1 ($\mathrm{R}=\mathrm{Zin}$)
Capacitor C1 (C=1/(Zin * 2 * PI * fc)) Ground G1

CONNECT e_in TO R1 TO C1 TO G1
CONNECT R1 TO e_out
END COMPONENT

Modelling Languages

-Component LowPassFilter


```
BOUNDS
    e_in.v = sin(2*PI*100*(1+5*TIME/0.1)*TIME)
    e_out.i = 0
BODY
    TSTOP = 0.1
    CINT = 0.0002
```


Working with graphical libraries

Bidirectional flow

Bidirectional flow

Links among state variables

Sometimes the process model are formulated with algebraic equations that constraint the state variables

$$
\begin{gathered}
\frac{d x_{1}}{d t}-f_{1}\left(x_{1}, x_{2}, u\right)=0 \quad \frac{d x_{2}}{d t}-f_{2}\left(x_{1}, x_{2}, u\right)=0 \\
\\
g\left(x_{1}, x_{2}\right)=0
\end{gathered}
$$

These constraints does not appear in the ODE format and are not considered in the integration methods

High index problems

High index problems can appear as the result of joining together components of a model library due to the bounding equations of the ports.

Example: Pendulum

The model could be described also in polar coordinates with only two state variables

They also may appear due to modelling approaches that include non minimum number of state variables

Index of a DAE

It is possible to reduce a system with links among its state variables to an equivalent ODE one using the Pantelides algorithm, which differentiates n times the state constraint equations.

$$
\begin{array}{ll}
\frac{d x_{1}}{d t}-f_{1}\left(x_{1}, x_{2}, u\right)=0 & \frac{d x_{2}}{d t}-f_{2}\left(x_{1}, x_{2}, u\right)=0 \\
& g\left(x_{1}, x_{2}\right)=0
\end{array}
$$

Index of a DAE system: Number of times that the state constraint equations must be differentiated in order to convert the DAE system into an equivalent ODE one.

Example: Pendulum (index 2)

$$
\begin{array}{ll}
\mathrm{m} \frac{\mathrm{dv}_{\mathrm{x}}}{\mathrm{dt}}=-\mathrm{F} \frac{\mathrm{x}}{\mathrm{~L}} & \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{v}_{\mathrm{x}} \\
\mathrm{~d} \frac{\mathrm{dv}}{\mathrm{y}} \mathrm{dt} & =-\mathrm{F} \frac{\mathrm{y}}{\mathrm{~L}}-\mathrm{mg} \\
\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{L}^{2} & \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{v}_{\mathrm{y}}
\end{array}
$$

$$
x^{2}+y^{2}=L \quad \Rightarrow 2 x v_{x}+2 y v_{y}=0 \Rightarrow 2 x \frac{d v_{x}}{d t}+2 v_{x}^{2}+2 y \frac{d v_{y}}{d t}+2 v_{y}^{2}=0
$$

1 Solving the sub-set of equations:
2 Solving the remaining variables with:

$$
m \frac{d v_{x}}{d t}=-F \frac{x}{L} \quad \frac{d x}{d t}=v_{x} \quad y=\sqrt{L^{2}-x^{2}} \quad v_{y}=-\frac{x v_{x}}{y} \quad \frac{d v_{y}}{d t}=\frac{-1}{y}\left[-x \frac{F x}{m L}+v_{x}^{2}+v_{y}^{2}\right]
$$

s2

High Index

COMPONENT Fuerza

DATA

$$
\text { REAL } m=2
$$

DECLS
REAL F
REAL v
REAL x

CONTINUOUS
$\mathrm{F}=\mathrm{m}^{*} \mathrm{v}^{\prime}$
$\mathrm{x}^{\prime}=\mathrm{v}$
$x=\exp (-$ TIME $/ 10) * \sin ($ TIME $)$
END COMPONENT
State variables need explicit time expressions to be used as boundaries and create index problems

High index

HIGH INDEX WIZARD
Some dynamic variables depend on other dynamic variables and cannot be integrated independently. This wizard helps you to remove dynamic variables from the equation system by deriving some equations (if possible]

New unknown variables

Name	Description	a
\square Capacitorl.e_p.v Potential at pin	E	

\square Capacitorl.v Voltage drop between the two pins...
Ground1.e o.v Potential at vin

Equivalent variables :
\square

Partition dynamic variables

Filter: *
Name Description
Capacitor2.v Voltage drop between the two pins = e...

Equivalent variables :
Unselect >
Unselect All >>

Name: partition 1

