
Introduction to EcosimPro

www.ecosimpro.com

Simulation languages

 Advantages:
 Provide support in all phases of model

development and exploitation
 Allow the user focusing the attention in the

problem and not in the programming
 Allow saving time
 Provide confidence in the results obtained
 Open the field to non-experts in modelling or

computing and to the use of models in other fields

Key steps and concepts

 Process represented by a mathematical model V - R*I = 0
 Specify the aims of the simulation (which variables are

known, boundary conditions, and which ones must be
computed): Example: I is known, voltage drop V wish to
be computed

 Formulate the mathematical model according to the aims
(Assign computational causality, create a partition)
V = I*R

 Specify an experiment (Give values to the parameters and
boundary conditions) R = 10, I = 2

 Solve the equations and display the results V = 10*2 = 20

Modelling languages

 Software tools that facilitate:
 The description of a process model and the

assignment of computational causality
 The description of the experiments to be

performed
 Solving the equations
 Displaying results
 Provide other functionalities (optimization,

parameter estimation, validation,…)

EcosimPro

 First version 1992, Unix, ESA
 First version under Windows: 1999
 Object oriented tool
 Support continuous, discrete and discrete event processes
 Models are built by textual description of from graphical

libraries.
 Provides a software development environment
 Open code, C++, ActiveX, OPC,…
 Version 5 , 2013, multiplatform QT
 Proosis

Cesar de Prada ISA-UVA 5

EcosimPro environment

Editing Area

Libraries /Workspaces

Models

Messages

Action Buttons

Graphical environment

Cesar de Prada ISA-UVA 7

Basic elements

 COMPONENT: Represents a model. Includes data,
variables, equations, events, topology,…

 PORT Defines the link of a component with the outside
world. It plays the role of electrical connections, pipes, etc.
that appear in the real world connecting elements.

 EXPERIMENT: Defines how to perform a simulation,
giving values to data, boundary conditions, etc.

 LIBRARY: Set of files with ports, components, functions,
etc. that belong to a certain field (e.g. CONTROL,
ELECTRICAL, THERMAL, etc.) and can be used to
define other components.

Cesar de Prada ISA-UVA 8

EcosimPro Environment

Creating a Workspace / library
Models described in Components
Components can be linked by ports
Editing a component. Example: a D.C. motor

V
I

ω

T
ω+=

−ω−=
ω

ekRiV

Tfki
td

dJ

Creating a component in a
Library

COMPONENT motorDC

DATA

 REAL J = 2 “Momentum
of inertia"

 REAL K = 3 “torque
constant"

 REAL f = 0.01 "friction
coefficient

 REAL R = 0.1 “electrical
resistance"

 REAL Ke = 0.5

DECLS

 REAL T
“Torque”

 REAL w “speed”

 REAL V
“voltage”

 REAL i
“current”

Declarative equations. They
will be manipulated
symbolically according to
the aims and boundary
conditions of the simulation

EL
Language

New

Compiling
COMPONENT motorDC

DATA

 REAL J = 2 “Momentum of
inertia"

 REAL K = 3 “torque constant"

 REAL f = 0.01 "friction
coefficient

 REAL R = 0.1 “electrical
resistance"

 REAL Ke = 0.5

DECLS

 REAL T “Torque”

 REAL w “speed”

 REAL v “voltage”

 REAL i “current”

CONTINUOUS

 J * w‘ = K * i – f * w - T

 v = R * i + Ke * w

END COMPONENT

Analysing the correctness
of the model from the
point of view of the EL
language

Compile

Partitions

 A partition is a math model associated to a process
ready to define experiments on it.

 When there are more variables than equations the user
should define the boundary conditions and, sometimes,
solve problems related with high index and algebraic
loops

V
I

ω
Boundary
conditions, e.g.:
Applied voltage
V and external
torque T

T
0kRiV

Tfik
td

dJ

2

1

=+−

−−=

ω

ωω

Why partitions?

21 ppkq −=

k
qpp

2

12 −=

Aim: Making the
model of a process
independent of its use
in a particular
situation

p1
p2

q

If p1 and p2 are
given:

If p1 and q are
given:

Same physical
element and law

The mathematical formulation of
the equations depends on the

context

Creating a partition

New partition

Viewing a partition

Types of variables of a partition

J/)Tfik(
td

d'

R/)kV(i

1

2

−ω−=ω=ω

ω+=
Boundaries Explicit

Dynamic

Derivative

Creating an experiment

New
experiment

Executing an experiment

Simulate in
monitor

Graphical environment:
Monitor

Integration methods

DAE systems

 Many problems are formulated in terms of coupled
differential and algebraic equations (DAE)

)u,y,x(g0

)u,y,x(f
td
xd

=

=

Or with implicit equations where it is not possible to
solve dx/dt in terms of the remaining variables

0)t,u,x,
dt
dx(F =

Integration: DASSL, IDAS

0)t,x,
dt
dx(F =

Implicit DAE equations can be solved approximating the
derivatives by BDF formulas of variable order and solving
the resulting non-linear implicit equation in x(t+h) with the
Newton-Raphson method. The procedure is initialized by
means of extrapolation.

0)ht),ht(x,
h

))t(x(old)ht(x(F =++
−+

Variable order approximation of dx/dt (BDF 1 to 5) and
variable step-size h in order to bound the integration error.

EcosimPro

View Reports
View Log
…

Options

Steps
Write the model
and check correctness
(compile)

Define Partition

Define experiment

Generate source
code (C++)

Compile and link

Execute the
experiment in a
graphical
environment

EL Introduction
COMPONENT Cntrl_on_off IS_A Controller
DATA
 REAL e_off = -1. "Error for switching to OFF state"
 REAL e_on = 1. "Error for switching to ON state"
 REAL u_off = 0. "Value of controller output when OFF"
 REAL u_on = 1. "Value of controller output when ON"

DECLS
ENUM state_type = {OFF, ON}
ENUM state_type state "Current state"

DISCRETE
 WHEN (e > e_on) THEN
 state = ON
 END WHEN

 WHEN (e < e_off) THEN
 state = OFF
 END WHEN
 CONTINUOUS
 u = ZONE (state == ON) u_on

 OTHERS u_off
END COMPONENT

Continuous equations

Discrete events

Local declarations

Parent Component

Data

Component_def::= ABSTRACT? COMPONENT ID

 (IS_A ID (,ID)*)?

 (‘(‘ parameter_s ‘)’)?

 (PORTS port_decl_s)?

 (DATA var_decl_s) ?

 (DECLS comp_decl_s)?

 (TOPOLOGY topology_stm_s)?

 (INIT seq_stm_s)?

 (DISCRETE discrete_stm_s)?

 (CONTINUOUS labelled_stm_s)?

 END COMPONENT

Component

Data Types

Basic: REAL, INTEGER, BOOLEAN, STRING
 REAL x, y
 STRING str = “hello world”
 BOOLEAN isConnected = FALSE
Enumerative types:
 ENUM chemicals = {N2, H2O, CO2, N2, O2, H2SO4 }
 SET_OF(chemicals) air = {N2, O2, H2O, CO2}
 SET_OF(chemicals) water = {H2O}

Arrays: REAL v[3]
 REAL w[3,6,2]
 ENUM chemicals mix[2]= { H20, O2 }
 STRING colors[3]= {“red”,”white”,”blue”}

Data Types

Constants: The user can declare a variable as constant, nobody
can modify it afterwards.
 CONST REAL PI= 3.141592

Different scopes in EL:
 LIBRARY DEFAULT_LIB
 REAL i= 9 -- Global variable
 COMPONENT test
 DECLS
 REAL v[4],y, i -- Local scope
 INIT
 i= DEFAULT_LIB.i + 4
 y= SUM(i IN 1,4; v[i]) -- expr. scope

 Data Types: Tables

EXPERIMENT Tinterpol ON tablas.T_V
 DECLS
 TABLE_1D tabT= { {0., 1, 2, 3, 4, 5, 6, 7, 8, 9}, -- time values
 { 0.3, 0.6, 0.7, 0.75, 1, 1.1, 1, 1.2, 1, 0.8 } } -- output
 INIT
 -- State variables
 omega = 0
 i = 0
 BOUNDS
 -- Set expressions for boundary variables: v = f(t;...)
 -- timeTableInterp use TIME as the input parameter in the table
 -- and avoid discontinuity problems between two intervals
 -- Constant after the last value

 T = timeTableInterp(TIME, tabT)
 V = 250
 BODY
 ……..

Tables
COMPONENT mastablas
 DATA
 ….
 TABLE_1D tabT= { {0., 1, 2, 3, 4, 5, 6, 7, 8, 9}, -- time values
 {0.3,0.6,0.7,0.75,1, 1.1, 1, 1.2,1, 0.8 } } -- output
 DECLS
 …….
 REAL Tfile
 INTEGER last = 0 -- variable auxiliar para mejorar la velocidad
 TABLE_1D tabF
 INIT
 readTableCols1D(expandFilePath("@TEST@/docs/mytable.txt"), 2, 3, tabF)
 CONTINUOUS
 ……
 Tspline = splineInterp1D(tabT, TIME)
 Tinterplast = linearInterpHist1D(tabT, TIME, last) -- no queda cte tras ultim
 Tinterp = linearInterp1D(tabT, TIME) -- no queda cte tras ultimo valor
 T = timeTableInterp(TIME, tabT) -- si queda cte tras el ultimo valor
 Tfile = timeTableInterp(TIME, tabF)
END COMPONENT

Expressions

Arithmetic: a * 2 + (c - u) / (x**2)
SUM
 x= SUM(i IN 1,3; inertia[i])
is equivalent to x= inertia[1]+inertia[2]+inertia[3]
Relational: 2 > (x - y)
Logical: (x > 9.8 AND n != 7 OR m == 6)

TIME contains the current integration time
TSTOP contains the current final integration time

 x= sin(TIME)
 WHEN(TIME >= (TSTOP / 2))

Types of statements supported

 EcosimPro provides three different paradigms:

 Sequential statements like IF, WHILE, FOR, etc. The order
of the statements is fundamental. Supported in Fortran, Java,
C++

 Continuous statements like Differential-Algebraic equations.
The order is indifferent. Used to express the dynamic
behaviour of the dynamic model.

 Discrete statements like WHEN. The order is indifferent.
Used to express the discrete behaviour of the dynamic model.

Sequential statements

They are executed in the order the user write them. Can be
used in any sequential part:
Assignments: x= 8
Function calls: x= add(2,2)
IF-THEN-ELSE:
 IF (x > 8.3) THEN
 y= sqrt(x)
 ELSE
 y= x
 ENDIF

WHILE speed < maxSpeed
 speed += 0.1
END WHILE

FOR (i IN 0,4)
 v[i]= 0
END FOR

EXPAND / EXPAND_BLOCK

EXPAND: Insertion of multiple equations in one go
 EXPAND(i IN 1,2) out_entropy[i]= in_entropy[i]

equivalent to: (don’t confuse with FOR statement!)
 out_entropy[1]= in_entropy[1]
 out_entropy[2]= in_entropy[2]
(Note: Each equation in totally independent)

EXPAND_BLOCK (i IN 1, n)
 mg[i] = P[i]*PM_g[i]*Vf_g/cte_R/(Tg[i]+273.15)
 P[i]= mg[i]*cte_R*(Tg[i]+273.15)/(PM_g[i]*Vf_g)
 END EXPAND_BLOCK

Functions

The user can define its own functions in EL and then call them
from any component or port.
FUNCTION REAL square(REAL x)
BODY
 RETURN x * x
END FUNCTION
...
x= square(y)

SUM
it generates a summation of elements in a given range. For
example
 v = SUM (j iN 2,5; x[i] * alpha[2*i])
generates the following equation:
 v = x[2]*alpha[4] + x[3]*alpha[6] + x[4]*alpha[8]

INIT / DISCR

COMPONENT reactorAB
DATA
 REAL L = 3.03 "altura del reactor (m)"
 REAL D = 3.03 "Diametro (m)"
 REAL T0 = 65 "Valor inicial de T (ºC)“
 …..
DECLS
 REAL T "Temperatura (ºC)"
 DISCR REAL A "Superficie de transmisión de calor del encamisado (m2)"
 DISCR REAL V "Volumen del reactor (m3)"
 ……
INIT
 V = PI*D*D*L /4 -- calculo del volumen del reactor
 A = PI*D*L -- calculo de la superficie
 T = T0
 Tr = 51.5
 …..

Events and Discontinuities

 In many processes, sharp changes take place at
certain time instants, which modify the
continuity of f(x,u) or its derivative.

 Such events change the model, so that f(x,u) is
transformed at this time instant from f1(x,u) to
f2(x,u)

 Variable structure models, hybrid models,….
 Under this circumstances, direct application of

the previous integration methods can lead to
wrong results.

 Heating and boiling at constant pressure:

≥λ

<
=

≥
<

=

e
2

e

e

ee
2

TT if R/I-

TT if 0
td
md

TT if 0
TT if)mcR/(I

td
Td

I

m T
R

Events and Discontinuities:
Examples

Te Boiling temperature

t t+h t-h t-2h

f1(x,u)
f2(x,u)

t+d

dtime t)u,x(f
td
xd

dtime t)u,x(f
td
xd

2

1

+≥=

+<=

∫
+

+=+
ht

t

τd)u),τ(x(f)t(x)ht(x

Events and Discontinuities

Discontinuities in ECOSIMPRO

 Discrete events
 WHEN (condition)
 equations
 END WHEN
 Changes in the continuous model structure
 x = ZONE (condition 1) equation 1
 ZONE (condition 2) equation 2
 OTHERS equation 3
 END
 AFTER - Delayed Assignation

Language declarations that
control explicitly the location
of discontinuities, the model
changes and the new initial
conditions

WHEN
COMPONENT WhenExample

 DATA REAL Tmin = 20 REAL Tmax = 50. DECLS REAL HeaterPower REAL T = 10.

 DISCRETE
 WHEN (T < Tmin) THEN
 HeaterPower = 50.
 END WHEN
 WHEN (T > Tmax) THEN
 HeaterPower = 0.
 END WHEN
 CONTINUOUS
 T' = 0.1 * (HeaterPower - 10)

END COMPONENT

HeatPower R T

AFTER

COMPONENT WhenExample

 DATA

 REAL Tmin = 20

 REAL Tmax = 50

 DECLS

 REAL HeaterPower

 REAL T = 10.

 DISCRETE
 WHEN (T < Tmin) THEN
 HeaterPower = 50. AFTER 5
 END WHEN
 WHEN (T > Tmax) THEN
 HeaterPower = 0. AFTER 2
 END WHEN

 CONTINUOUS
 T' = 0.1 * (HeaterPower - 10)
END COMPONENT

HeatPower R T

ZONE

--Limitation of a variable

COMPONENT Limits_0

 DECLS
 REAL x
 REAL xmax
 REAL xmin
 REAL y

 CONTINUOUS
 xmax = 0.5 + 0.2 * sin(TIME)
 xmin = -0.5 - 0.2 * sin(2 * TIME)
 x = sin(3*TIME)

 y = ZONE (x > xmax) xmax
 ZONE (x < xmin) xmin
 OTHERS x
END COMPONENT

Construction Parameters
IF INSERT

 COMPONENT tinsert (INTEGER sw = 1)
 DECLS
 REAL x
 REAL y
 CONTINUOUS
 IF (sw == 1) INSERT
 3*x - 6*y = 9
 4*x - 4*y = 9
 ELSE
 5*x + 7.6*y = 9.5
 4.34*x - 64*y = 86.4
 END IF
END COMPONENT

Loop Tearing

 Direct solution of an algebraic loop using Newton-Raphson
method leads to an algorithm with a size of the Jacobian as
large as the number of variables involved in the loop.

 The use of Equation Tearing techniques allows sustantial
reductions of the size of the Jacobian

Some tearing variables are selected, so that, if
given an initial value, it is possible to compute
explicitly the remaining variables of the loop.
As the initial value may be wrong, there will
be as many equations of the loop as tearing
variables that will not compute equal to zero
(residual equations). The Newton- Raphson
algorithm will iterate modifying the tearing
variables until the residual equations are
satisfied, but with a reduced Jacobian size.

F1(x1, x2) = 0
F2(x1, x2, x3) = 0
F3(x1, x2, x3) = 0

x2 selected as tearing
variable

x1 = f1(x2)
x3 = f2(x1, x2)
F3(x1, x2, x3) = residual

Algebraic Loops

Building models

 A model can be composed linking predefined and tested modules
 Each module contains the mathematical model of a particular sub-

system
 Each module is connected to the others through an interface or

port

 BUT the model equations are generated later on for the whole
system taking into account the boundary conditions and associated
constraints. High level description.

Va Vb

Ia Ib Va Vb

Ia Ib

Va Vb

Ia Ib

R1

C1

R2

Model libraries

Facilitate the re-use of models
There are based in the following principles:
Modularity: Independent description of each module
Abstraction: Every module can be used through its interface
with no need to know details of its internal structure
Hierarchy
Genericity

EcosimPro:
Object oriented
Modelling

Ports

PORT Elec
SUM REAL c “current (Amperes)”
EQUAL REAL v “voltage (Volts)”

END PORT

Electrical Port Name

Current and voltage variables

Va Vb

Ia Ib Va Vb

Ia Ib

Va Vb

Ia Ib

R1

C1

R2

 Body of the
 Component
Port

Component

Ports

PORT mech_rot "1D rotational flange“

 SUM REAL T UNITS u_Nm "Torque "
 EQUAL REAL omega UNITS u_rad_s "Absolute angular velocity"
 REAL n UNITS u_rpm "Angular velocity"

 CONTINUOUS
 omega = n * (2*MATH.PI/60)
END PORT

ω

T

DC Motor with Ports

USE MATH
USE PORTS_LIB

COMPONENT motorconpuertos

PORTS
 IN elec feed
 IN elec ground
 OUT mech_ rot eje

DATA
 …..
DECLS
 …..

…
CONTINUOUS

 J*w'= K*i - f*w - T
 V = R*i + Ke*w
 feed.i = ground.i
 feed.i = i
 V = feed.v - ground.v
 eje.T = T
 eje.omega = w

END COMPONENT

V
I

ω

T

Ports

PORT Gas

 SUM REAL W RANGE 0, Inf “Mass Flow (Kg/s)"

 EQUAL REAL P RANGE 0, Inf "Pressure (Pa)"

 EQUAL OUT REAL H = 700000 "Enthalpy (J/Kg)"

 EQUAL OUT REAL FAR "Fuel Air Ratio"

 SUM REAL WF "Fuel Flow (Kg/s)"

 SUM IN REAL WH "Energy Flow (W)"

 REAL T = 500. "Temperature (K)"

 CONTINUOUS

 T = T_H_FAR(H, FAR)

 WH = W * H

 WF = (FAR / (1 + FAR)) * W

END PORT

Additional equations are
generated automatically
according to the connections
of the port

EQUAL OUT / SUM IN
 Transport Variables:

 Temperature and Concentrations are very special variables, they travel
with the fluid.

 In case of flow splitting, the temperatures of the leaving flows are
equal to the inlet temperature

 In case of flow merging, the temperature of the leaving flow is the
mass flow weighted average of the inlet temperatures:

T1

T4
T3

T2

T1 = T2 = T3 = T4

m1
T1 T4

m3
T3

m2
T2

T4 = m1 T1 + m2 T2 + m3 T3
m1 + m2 + m3

Adding the auxiliary modifiers IN or OUT to SUM or EQUAL. It means that a variable
will have the SUM or EQUAL behaviour only if the port has the same direction as the
auxiliary modifier. If not, the connecting equation is not generated. Example:

PORT fluid "fluid port"
 SUM REAL w "mass flow"
 EQUAL REAL p "pressure"
 SUM IN REAL E "energy flow"
 EQUAL OUT REAL T "temperature"
 CONTINUOUS
 E = w * T
END PORT

PORT Elec

 SUM REAL I -- corriente

 EQUAL REAL V -- tension

END PORT

Modelling Languages

COMPONENT LowPassFilter
 PORTS
 IN Elec e_in
 OUT Elec e_out
 DATA
 REAL Zin=1000 -- Inlet Impedance
 REAL fc=100 -- Cut Frequency

 TOPOLOGY
 Resistor R1 (R=Zin)
 Capacitor C1 (C= 1 / (Zin * 2 * PI * fc))
 Ground G1

 CONNECT e_in TO R1 TO C1 TO G1
 CONNECT R1 TO e_out

END COMPONENT

Component
LowPassFilter

Electric Port

R1

C1 e_in

G

e_out

G1

Modelling Languages

 COMPONENT LowPassFilter
 PORTS
 IN Elec e_in
 OUT Elec e_out
 DATA
 REAL Zin=1000 --Inlet Impedance
 REAL fc=100 --Cut Frequency
 TOPOLOGY
 R R1(R=Zin)
 C C1(C= 1 / (Zin * 2 * PI * fc))
 G G1
 CONNECT e_in TO R1 TO C1 TO G1
 CONNECT R1 TO e_out
 END COMPONENT

•Component LowPassFilter

•Experiment

 BOUNDS
 e_in.v = sin(2*PI*100*(1+5*TIME/0.1)*TIME)
 e_out.i = 0
BODY
 TSTOP = 0.1
 CINT = 0.0002

Working with graphical libraries

Bidirectional flow

Bidirectional flow

Sometimes the process model are formulated with
algebraic equations that constraint the state variables

0)u,x,x(f

td
xd

211
1 =−

0)x,x(g

0)u,x,x(f
td

xd

21

212
2

=

=−

Links among state variables

These constraints does not appear in the ODE format and
are not considered in the integration methods

High index problems

U

R
L

i1

MOTOR
DC

ω

L2

R2

U2

i2 DINAMO

21

21
1

1 ...TT...
dt

dJ

ω=ω

+++=
ω

...TT...
dt

dJ 21
2

2 +++=
ω

High index problems can appear as the result of joining
together components of a model library due to the
bounding equations of the ports.

Example: Pendulum

222

y
y

x
x

Lyx

v
dt
dymg

L
yF

dt
dv

m

v
dt
dx

L
xF

dt
dvm

=+

=−−=

=−=

ω=
θ

θ−=
ω

dt
d

)sin(mg
dt
dmThe model could be

described also in
polar coordinates
with only two state
variables

mg

x

y

F

θ L

They also may
appear due to
modelling
approaches that
include non
minimum number
of state variables

Index of a DAE

It is possible to reduce a system with links among its
state variables to an equivalent ODE one using the
Pantelides algorithm, which differentiates n times the
state constraint equations.

Index of a DAE system: Number of times that the
state constraint equations must be differentiated in
order to convert the DAE system into an equivalent
ODE one.

0)u,x,x(f
td

xd
211

1 =−

0)x,x(g

0)u,x,x(f
td

xd

21

212
2

=

=−

Example: Pendulum (index 2)

222

y
y

x
x

Lyx

v
dt
dymg

L
yF

dt
dv

m

v
dt
dx

L
xF

dt
dvm

=+

=−−=

=−=

0v2
dt

dv
y2v2

dt
dvx20yv2xv2Lyx 2

y
y2

x
x

yx
22 =+++⇒=+⇒=+

x
x v

dt
dx

L
xF

dt
dvm =−=

 ++−

−
=−=−= 2

y
2
x

yx
y

22 vv
mL
Fxx

y
1

dt
dv

y
xvvxLy

1 Solving the sub-set of equations: 2 Solving the remaining variables with:

mg

x

y

F

θ L

COMPONENT Fuerza

 DATA
 REAL m = 2
 DECLS
 REAL F
 REAL v
 REAL x

 CONTINUOUS
 F = m * v'
 x'= v
 x = exp(-TIME/10) * sin(TIME)

END COMPONENT

High Index

State variables need explicit time
expressions to be used as boundaries
and create index problems

High index

	Introduction to EcosimPro
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	EcosimPro
	EcosimPro environment
	Graphical environment
	Basic elements
	EcosimPro Environment
	Creating a component in a Library
	Compiling
	Número de diapositiva 12
	Número de diapositiva 13
	Creating a partition
	Viewing a partition
	Types of variables of a partition
	Creating an experiment
	Executing an experiment
	Integration methods
	Número de diapositiva 20
	Número de diapositiva 21
	EcosimPro
	Número de diapositiva 23
	Número de diapositiva 24
	Component
	Data Types
	Data Types
	 Data Types: Tables
	Tables
	Expressions
	Types of statements supported
	Sequential statements
	EXPAND / EXPAND_BLOCK
	Functions
	INIT / DISCR
	Número de diapositiva 36
	Número de diapositiva 37
	Número de diapositiva 38
	Número de diapositiva 39
	WHEN
	AFTER
	ZONE
	Construction Parameters�IF INSERT
	Loop Tearing
	Algebraic Loops
	Número de diapositiva 46
	Número de diapositiva 47
	Número de diapositiva 48
	Ports
	DC Motor with Ports
	Ports
	Número de diapositiva 52
	Número de diapositiva 53
	Modelling Languages
	Modelling Languages
	Working with graphical libraries
	Bidirectional flow
	Bidirectional flow
	Número de diapositiva 59
	Número de diapositiva 60
	Número de diapositiva 61
	Número de diapositiva 62
	Número de diapositiva 63
	Número de diapositiva 64
	High Index
	High index

