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Simulation languages 

 Advantages: 
 Provide support in all phases of  model 

development and exploitation 
 Allow the user focusing the attention in the 

problem and not in the programming 
 Allow saving time 
 Provide confidence in the results obtained 
 Open the field to non-experts in modelling or 

computing and to the use of  models in other fields 



Key steps and concepts 

 Process represented by a mathematical model  V - R*I = 0 
 Specify the aims of  the simulation (which variables are 

known, boundary conditions,  and which ones must be 
computed):  Example: I is known, voltage drop V wish to 
be computed 

 Formulate the mathematical model according to the aims 
(Assign computational causality, create a partition)           
V = I*R  

 Specify an experiment (Give values to the parameters and 
boundary conditions)    R = 10,  I = 2 

 Solve the equations and display the results  V = 10*2 = 20 



Modelling languages 

 Software tools that facilitate: 
 The description of  a process model and the 

assignment of  computational causality 
 The description of  the experiments to be 

performed 
 Solving the equations 
 Displaying results 
 Provide other functionalities (optimization, 

parameter estimation, validation,…) 



EcosimPro 

 First version 1992, Unix, ESA 
 First version under Windows: 1999 
 Object oriented tool 
 Support continuous, discrete and discrete event processes 
 Models are built by textual description of from graphical 

libraries. 
 Provides a software development environment 
 Open code, C++, ActiveX, OPC,… 
 Version 5 , 2013, multiplatform QT 
 Proosis 
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EcosimPro environment 

Editing Area 

Libraries /Workspaces 

Models 

Messages 

Action Buttons 



Graphical environment 

Cesar de Prada ISA-UVA 7 



Basic elements 

 COMPONENT: Represents a model. Includes data, 
variables, equations, events, topology,… 

 PORT Defines the link of a component with the outside 
world. It plays the role of electrical connections, pipes, etc. 
that appear in the real world connecting elements.   

 EXPERIMENT: Defines how to perform a simulation, 
giving values to data, boundary conditions, etc. 

 LIBRARY: Set of files with ports, components, functions, 
etc. that belong to a certain field (e.g. CONTROL, 
ELECTRICAL, THERMAL, etc.) and can be used to 
define other components.  
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EcosimPro Environment 

Creating a Workspace / library 
Models described in Components 
Components can be linked by ports 
Editing a component. Example: a D.C. motor 
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Creating a component in a 
Library 

COMPONENT motorDC 

DATA 

     REAL J = 2        “Momentum 
of inertia" 

     REAL K = 3        “torque 
constant" 

     REAL f = 0.01     "friction 
coefficient 

     REAL R = 0.1      “electrical 
resistance" 

     REAL Ke = 0.5 

DECLS 

    REAL T                 
“Torque” 

    REAL  w               “speed” 

   REAL  V                 
“voltage” 

   REAL  i                  
“current” 

 

                   
 

                

  

Declarative equations. They 
will be manipulated 
symbolically according to 
the aims and boundary 
conditions of the simulation 

EL 
Language 

New 



Compiling  
COMPONENT motorDC 

DATA 

     REAL J = 2        “Momentum of 
inertia" 

     REAL K = 3        “torque constant" 

     REAL f = 0.01     "friction 
coefficient 

     REAL R = 0.1      “electrical 
resistance" 

     REAL Ke = 0.5 

DECLS 

    REAL T                 “Torque” 

    REAL  w               “speed” 

   REAL  v                 “voltage” 

   REAL  i                  “current” 

CONTINUOUS 

       J * w‘ = K * i – f * w - T 

     v = R * i + Ke * w 

END COMPONENT 

Analysing the correctness 
of  the model from the 
point of  view of  the EL 
language 

Compile 



Partitions 

 A partition is a math model associated to a process 
ready to define experiments on it.  

 When there are more variables than equations the user 
should define the boundary conditions and, sometimes, 
solve problems related with high index and algebraic 
loops 
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Why partitions? 
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Aim: Making the 
model of a process 
independent of its use 
in a particular 
situation 

p1 
p2 

q 

If p1 and p2 are 
given: 

If p1 and q are 
given: 

Same physical 
element and law 

The mathematical formulation of  
the equations depends on the 

context 



Creating a partition 

New partition 



Viewing a partition 



Types of variables of a partition 
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Creating an experiment 

New 
experiment 



Executing an experiment 

Simulate in 
monitor 

Graphical environment: 
Monitor 



Integration methods 



DAE systems 

 Many problems are formulated in terms of  coupled 
differential and algebraic equations (DAE) 

)u,y,x(g0

)u,y,x(f
td
xd

=

=

Or with implicit equations where it is not possible to 
solve dx/dt in terms of the remaining variables 
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Integration: DASSL, IDAS 

0)t,x,
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Implicit DAE equations can be solved approximating the 
derivatives by BDF formulas of variable order and solving 
the resulting non-linear implicit equation in x(t+h) with the 
Newton-Raphson method. The procedure is initialized by 
means of extrapolation. 
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Variable order approximation of dx/dt (BDF 1 to 5) and 
variable step-size h in order to bound the integration error. 



EcosimPro 

View Reports 
View Log 
… 

Options 



Steps 
Write the model 
and check correctness 
(compile) 

Define Partition 

Define experiment 

Generate source 
code (C++) 

Compile and link 

Execute the 
experiment in a 
graphical 
environment 



EL Introduction  
COMPONENT Cntrl_on_off IS_A Controller
DATA
    REAL   e_off = -1.   "Error for switching to OFF state"
    REAL   e_on = 1.     "Error for switching to ON state"
    REAL   u_off  = 0.   "Value of controller output when OFF"
    REAL   u_on   = 1.   "Value of controller output when ON"

DECLS
ENUM state_type = {OFF, ON} 
ENUM state_type state       "Current state"

DISCRETE
        WHEN (e > e_on) THEN
                state = ON    
        END WHEN

        WHEN (e < e_off) THEN
               state = OFF
        END WHEN
 CONTINUOUS
        u = ZONE (state == ON) u_on     

     OTHERS u_off
END COMPONENT 

Continuous equations

Discrete events

Local declarations

Parent Component

Data

 



Component_def::= ABSTRACT? COMPONENT ID 

          (IS_A ID (,ID)* )? 

          (‘(‘ parameter_s ‘)’)? 

          ( PORTS port_decl_s )? 

          ( DATA var_decl_s ) ? 

          ( DECLS comp_decl_s )? 

          ( TOPOLOGY topology_stm_s )? 

          ( INIT seq_stm_s )? 

          ( DISCRETE discrete_stm_s )? 

          ( CONTINUOUS labelled_stm_s )? 

       END COMPONENT 

Component 



Data Types 

Basic: REAL, INTEGER, BOOLEAN, STRING  
   REAL x, y 
   STRING str = “hello world” 
   BOOLEAN isConnected = FALSE 
Enumerative types: 
   ENUM chemicals = {N2, H2O, CO2, N2, O2, H2SO4 }  
   SET_OF(chemicals) air = {N2, O2, H2O, CO2}  
   SET_OF(chemicals) water = {H2O} 

Arrays:    REAL v[3] 
     REAL w[3,6,2] 
                        ENUM chemicals mix[2]= { H20, O2 } 
                        STRING colors[3]= {“red”,”white”,”blue”} 



Data Types 

Constants: The user can declare a variable as constant, nobody 
can modify it afterwards. 
     CONST REAL PI= 3.141592 

Different scopes in EL: 
   LIBRARY DEFAULT_LIB 
   REAL i= 9                -- Global variable 
   COMPONENT test 
   DECLS 
     REAL v[4],y, i         -- Local scope 
   INIT 
     i= DEFAULT_LIB.i + 4 
     y= SUM(i IN 1,4; v[i]) -- expr. scope 



  Data Types:  Tables 

EXPERIMENT Tinterpol ON tablas.T_V 
   DECLS 
       TABLE_1D tabT= { {0.,  1,    2,    3,    4,  5,   6,  7,   8, 9},    -- time values 
    { 0.3, 0.6, 0.7, 0.75, 1, 1.1, 1, 1.2, 1, 0.8 } }    -- output 
   INIT 
      -- State variables 
          omega = 0 
          i = 0 
   BOUNDS 
      -- Set expressions for boundary variables: v = f(t;...) 
      -- timeTableInterp use TIME as the input parameter in the table  
      -- and avoid discontinuity problems between two intervals 
      --  Constant after the last value 
       
      T = timeTableInterp(TIME, tabT) 
      V = 250 
   BODY 
      …….. 



Tables 
COMPONENT mastablas 
         DATA 
 …. 
 TABLE_1D tabT= { {0., 1,  2,  3,   4, 5,   6, 7,  8, 9},    -- time values 
                                              {0.3,0.6,0.7,0.75,1, 1.1, 1, 1.2,1, 0.8 } }    -- output 
        DECLS 
                ……. 
 REAL Tfile 
 INTEGER last = 0 -- variable auxiliar para mejorar la velocidad 
 TABLE_1D tabF  
         INIT 
 readTableCols1D(expandFilePath("@TEST@/docs/mytable.txt"), 2, 3, tabF) 
        CONTINUOUS 
 …… 
 Tspline = splineInterp1D(tabT, TIME) 
 Tinterplast = linearInterpHist1D(tabT, TIME, last) -- no queda cte tras ultim 
 Tinterp = linearInterp1D(tabT, TIME)   -- no queda cte tras ultimo valor 
 T = timeTableInterp(TIME, tabT)   -- si queda cte tras el ultimo valor 
 Tfile = timeTableInterp(TIME, tabF) 
END COMPONENT 



Expressions 

Arithmetic:  a * 2 + (c - u) / (x**2) 
SUM 
    x= SUM(i IN 1,3; inertia[i])  
is equivalent to x= inertia[1]+inertia[2]+inertia[3] 
Relational:  2 > ( x - y) 
Logical:  (x > 9.8 AND n != 7 OR m == 6 ) 

TIME contains the current integration time 
TSTOP contains the current final integration time 
 
  x= sin(TIME) 
  WHEN( TIME >= (TSTOP / 2 ) ) 



Types of statements supported 

 EcosimPro provides three different paradigms: 
 

  Sequential statements like IF, WHILE, FOR, etc. The order 
of the statements is fundamental. Supported in Fortran, Java, 
C++ 

  Continuous statements like Differential-Algebraic equations. 
The order is indifferent. Used to express the dynamic 
behaviour of the dynamic model. 

  Discrete statements like WHEN. The order is indifferent. 
Used to express the discrete behaviour of the dynamic model. 



Sequential statements 

They are executed in the order the user write them. Can be 
used in any sequential part: 
Assignments:    x= 8 
Function calls:  x= add(2,2) 
IF-THEN-ELSE:   
   IF ( x > 8.3 ) THEN 
     y= sqrt(x) 
   ELSE 
     y= x 
   ENDIF 

WHILE speed < maxSpeed 
   speed += 0.1 
END WHILE 
 
FOR (i IN 0,4) 
    v[i]= 0 
END FOR 



EXPAND / EXPAND_BLOCK 

EXPAND: Insertion of multiple equations in one go 
   EXPAND( i IN 1,2) out_entropy[i]= in_entropy[i] 
 
equivalent to: (don’t confuse with FOR statement!) 
   out_entropy[1]= in_entropy[1] 
   out_entropy[2]= in_entropy[2] 
(Note: Each equation in totally independent) 

EXPAND_BLOCK   (i IN 1, n) 
      mg[i] = P[i]*PM_g[i]*Vf_g/cte_R/(Tg[i]+273.15) 
      P[i]= mg[i]*cte_R*(Tg[i]+273.15)/(PM_g[i]*Vf_g) 
 END EXPAND_BLOCK 



Functions 

The user can define its own functions in EL and then call them 
from any component or port. 
FUNCTION REAL square(REAL x) 
BODY 
    RETURN x * x 
END FUNCTION 
... 
x= square(y) 

SUM  
it generates a summation of elements in a given range. For 
example 
           v = SUM (j iN 2,5; x[i] * alpha[2*i]) 
generates the following equation: 
       v = x[2]*alpha[4] + x[3]*alpha[6] + x[4]*alpha[8] 



INIT  / DISCR 

COMPONENT reactorAB 
DATA 
 REAL L = 3.03 "altura del reactor (m)" 
 REAL D = 3.03 "Diametro (m)" 
 REAL T0 = 65 "Valor inicial de T (ºC)“ 
 ….. 
DECLS 
 REAL T "Temperatura (ºC)" 
 DISCR REAL A "Superficie de transmisión de calor del encamisado (m2)" 
 DISCR REAL V "Volumen del reactor (m3)" 
 …… 
INIT 
 V = PI*D*D*L /4   -- calculo del volumen del reactor 
 A = PI*D*L            -- calculo de la superficie 
 T = T0 
 Tr = 51.5 
 ….. 



Events and  Discontinuities 

 In many processes, sharp changes take place at 
certain time instants, which modify the 
continuity of  f(x,u) or its derivative. 

 Such events change the model, so that f(x,u) is 
transformed at this time instant from f1(x,u) to 
f2(x,u) 

 Variable structure models, hybrid models,…. 
 Under this circumstances, direct application of  

the previous integration methods can lead to 
wrong results. 



 Heating and boiling at constant pressure: 
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Events and  Discontinuities: 
Examples 

Te Boiling temperature 
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Discontinuities in ECOSIMPRO 

 Discrete events 
       WHEN ( condition) 
            equations  
       END WHEN 
 Changes in the continuous model structure 
      x = ZONE  (condition 1)  equation 1 
            ZONE (condition 2)  equation 2 
            OTHERS   equation 3 
            END 
 AFTER - Delayed Assignation 

 

Language declarations that 
control explicitly the location 
of discontinuities, the model 
changes and the new initial 
conditions 



WHEN 
COMPONENT WhenExample 
 
      DATA            REAL Tmin = 20                REAL Tmax = 50.        DECLS           REAL HeaterPower           REAL T = 10. 
      
 DISCRETE 
         WHEN (T < Tmin) THEN 
             HeaterPower = 50.   
         END WHEN 
         WHEN (T > Tmax) THEN 
             HeaterPower = 0.   
         END WHEN 
      CONTINUOUS 
          T' = 0.1 * (HeaterPower - 10) 
 
END COMPONENT 

HeatPower R T 



AFTER 

COMPONENT WhenExample 
 
     DATA 
  
         REAL Tmin = 20 
 
         REAL Tmax = 50 
 
     DECLS 
          
    REAL HeaterPower 
 
         REAL T = 10. 
 
     DISCRETE 
         WHEN (T < Tmin) THEN 
             HeaterPower = 50. AFTER 5  
         END WHEN 
         WHEN (T > Tmax) THEN 
             HeaterPower = 0.  AFTER 2 
         END WHEN 
 
      CONTINUOUS 
          T' = 0.1 * (HeaterPower - 10) 
END COMPONENT 

HeatPower R T 



ZONE 
 
--Limitation of  a variable 
 
COMPONENT Limits_0 
 
    DECLS 
        REAL x 
        REAL xmax 
        REAL xmin 
        REAL y 
     
    CONTINUOUS 
        xmax = 0.5 + 0.2 * sin(TIME) 
        xmin = -0.5 - 0.2 * sin(2 * TIME)    
        x = sin(3*TIME) 
 
        y  = ZONE (x > xmax ) xmax 
             ZONE (x < xmin ) xmin 
             OTHERS   x 
END COMPONENT 



Construction Parameters 
IF INSERT 

        COMPONENT tinsert (INTEGER sw = 1) 
  DECLS 
        REAL x 
        REAL y 
  CONTINUOUS 
    IF  ( sw == 1 )  INSERT 
         3*x - 6*y = 9 
         4*x - 4*y = 9 
    ELSE 
         5*x + 7.6*y = 9.5 
         4.34*x - 64*y = 86.4 
    END IF 
END COMPONENT 



Loop Tearing 

 Direct solution of an algebraic loop using Newton-Raphson 
method leads to an algorithm with a size of the Jacobian as 
large as the number of variables involved in the loop.   

 The use of Equation Tearing techniques allows sustantial 
reductions of the size of the Jacobian 

Some tearing variables are selected, so that, if 
given an initial value, it is possible to compute 
explicitly the remaining variables of the loop. 
As the initial value may be wrong, there will 
be as many equations of the loop as tearing 
variables that will not compute equal to zero 
(residual equations). The Newton- Raphson 
algorithm will iterate modifying the tearing 
variables until the residual equations are 
satisfied, but with a reduced Jacobian size. 

F1(x1, x2) = 0 
F2(x1, x2, x3) = 0 
F3(x1, x2, x3) = 0 
 
x2 selected as tearing 
variable 
 
x1 = f1(x2) 
x3 = f2(x1, x2) 
F3(x1, x2, x3) = residual 



Algebraic Loops 



Building models   

 A model can be composed linking predefined and tested modules 
 Each module contains the mathematical model of  a particular sub-

system 
 Each module is connected to the others through an interface or 

port 
 

 
 

 BUT the model equations are generated later on for the whole 
system taking into account the boundary conditions and associated 
constraints. High level description. 
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Model libraries 

Facilitate the re-use of models 
There are based in the following principles: 
Modularity: Independent description of each module 
Abstraction: Every module can be used through its interface 
with no need to  know details of its internal structure 
Hierarchy 
Genericity 

EcosimPro: 
Object oriented 
Modelling 



Ports 

PORT Elec
SUM REAL      c   “current (Amperes)”
EQUAL REAL v  “voltage (Volts)”

END PORT

Electrical Port Name

Current and voltage variables

Va Vb

Ia Ib Va Vb

Ia Ib

Va Vb

Ia Ib

R1

C1

R2

                 Body of the  
                 Component 
Port 

Component 



Ports 

PORT mech_rot  "1D rotational flange“ 
 
 SUM REAL      T          UNITS u_Nm  "Torque " 
              EQUAL REAL omega  UNITS u_rad_s "Absolute angular velocity" 
              REAL                n          UNITS u_rpm "Angular velocity" 
      
       CONTINUOUS 
                omega = n * (2*MATH.PI/60) 
END PORT 

ω 

T 



DC Motor with Ports 

USE MATH 
USE PORTS_LIB 
 
COMPONENT motorconpuertos 
 
PORTS 
       IN elec      feed 
       IN elec      ground 
       OUT mech_ rot    eje  
 
DATA 
  ….. 
DECLS 
 ….. 

… 
CONTINUOUS 
   
  J*w'= K*i - f*w - T 
  V = R*i + Ke*w 
  feed.i = ground.i 
  feed.i = i 
  V = feed.v - ground.v 
  eje.T = T 
  eje.omega = w 
 
END COMPONENT 
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Ports 

PORT Gas 

   SUM   REAL        W    RANGE 0, Inf  “Mass Flow (Kg/s)" 

   EQUAL REAL        P    RANGE 0, Inf  "Pressure  (Pa)" 

   EQUAL OUT  REAL   H = 700000         "Enthalpy  (J/Kg)" 

   EQUAL OUT  REAL   FAR                "Fuel Air Ratio" 

   SUM   REAL   WF                 "Fuel Flow (Kg/s)" 

   SUM   IN   REAL   WH                 "Energy Flow (W)" 

              REAL   T  = 500.          "Temperature (K)" 

    

 CONTINUOUS 

        T  = T_H_FAR(H, FAR) 

        WH = W * H 

        WF = (FAR / (1 + FAR)) * W 

END PORT 

 

Additional equations are 
generated automatically 
according to the connections 
of  the port 



EQUAL OUT  / SUM IN  
 Transport Variables:  

 Temperature and Concentrations are  very special variables, they travel 
with the fluid.  

 In case of flow splitting,  the temperatures of the leaving flows are 
equal to the inlet temperature 

 In case of flow merging, the temperature of the leaving flow is the 
mass flow weighted average of the inlet  temperatures:  

T1

T4
T3

T2

T1 = T2 = T3 = T4

m1
T1 T4

m3
T3

m2
T2

T4 = m1 T1  + m2 T2 + m3 T3
m1  + m2  + m3



Adding the auxiliary modifiers IN or OUT to SUM or EQUAL. It means that a variable 
will have the SUM or EQUAL behaviour only if  the port has the same direction as the 
auxiliary modifier. If  not, the connecting equation is not generated.  Example: 
 
PORT fluid                    "fluid port" 
     SUM REAL w            "mass flow"  
     EQUAL REAL p       "pressure" 
     SUM IN REAL E       "energy flow" 
     EQUAL OUT REAL T     "temperature" 
    CONTINUOUS 
        E = w * T 
END PORT 



PORT  Elec 

       SUM       REAL    I   -- corriente 

       EQUAL  REAL    V   -- tension 

END PORT 

Modelling Languages 
 
COMPONENT LowPassFilter 
       PORTS 
             IN     Elec    e_in 
             OUT Elec    e_out 
       DATA 
             REAL Zin=1000   -- Inlet Impedance 
             REAL fc=100        -- Cut Frequency 
 
      TOPOLOGY  
             Resistor      R1   (R=Zin) 
             Capacitor    C1   (C= 1 / (Zin * 2 * PI * fc)) 
             Ground    G1  
 
             CONNECT e_in  TO  R1  TO  C1  TO  G1 
             CONNECT R1  TO  e_out 
 
END COMPONENT  

Component 
LowPassFilter 

Electric Port 

R1 

C1 e_in 

G 

e_out 

G1 



Modelling Languages 

 COMPONENT LowPassFilter 
     PORTS 
         IN  Elec e_in 
         OUT Elec e_out 
     DATA 
         REAL Zin=1000  --Inlet Impedance 
         REAL fc=100    --Cut Frequency 
     TOPOLOGY  
         R R1(R=Zin) 
         C C1(C= 1 / (Zin * 2 * PI * fc)) 
         G G1  
         CONNECT e_in TO R1 TO C1 TO G1 
         CONNECT R1 TO e_out 
 END COMPONENT  

 
 

•Component LowPassFilter 

•Experiment 

 BOUNDS     
   e_in.v = sin(2*PI*100*(1+5*TIME/0.1)*TIME) 
   e_out.i = 0 
BODY 
   TSTOP = 0.1 
   CINT = 0.0002 



Working with graphical libraries 



Bidirectional flow 



Bidirectional flow 



Sometimes the process model are formulated with 
algebraic equations that constraint the state variables 
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Links among state variables 

These constraints does not appear in the ODE format and 
are not considered in the integration methods 



High index problems 
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High index problems can appear as the result of joining 
together components of a model library due to the 
bounding equations of the ports. 



Example: Pendulum 
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They also may 
appear due to 
modelling 
approaches that 
include non 
minimum number 
of  state variables 



Index of  a DAE 

It is possible to reduce a system with links among its 
state variables to an equivalent ODE one using the 
Pantelides algorithm, which differentiates n times the 
state constraint equations.  

 

 

Index of a DAE system: Number of times that the 
state constraint equations must be differentiated in 
order to convert the DAE system into an equivalent 
ODE one. 
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Example: Pendulum (index 2) 
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COMPONENT Fuerza 
 
   DATA 
 REAL m = 2 
   DECLS 
       REAL F 
       REAL v 
       REAL x 
     
   CONTINUOUS 
 F = m * v'                                         
 x'= v 
 x = exp(-TIME/10) * sin(TIME) 
 
END COMPONENT 

High Index 

State variables need explicit time 
expressions to be used as boundaries 
and create index problems 



High index 
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