

CTA (Azucarera Ebro Puleva, S.L. University of Valladolid) Spain

A Simulator of Sugar Factories for Operator Training C. de Prada, A. Merino, S. Pelayo, F. Acebes, R. Alves

INDEX

- 1. Beet sugar factories
- 2. Training simulator
 - Aims
 - Architecture
 - Main Functions
- 3. A training session
- 4. Conclusions

BEET SUGAR FACTORIES

Complex factories, including a wide variety of processes
High degree of automation
Limited number of operators

BEET SUGAR FACTORY

BEET SUGAR FACTORIES

Process Operation is done by means of a distributed control system (DCS)

- Receives data from tranmiters and Laboratory.
- Computes control signals to the actuators
- Provides a MMI for supervision of the process

4 CONTROL ROOM OPERATORS.

DCS screens

Images of some strategic points

- They are in charge of process operation
- They must understand how the process and its control system work
- They must detect and solve faults and malfunctions
- They should provide a smooth and optimal operation

CONTROL ROOM OPERATORS

Operation of a sugar melter by several shifts

Differences in the behaviour of the operators reflect on the process performance

Operators training is a key factor in process performance

TRAINING SIMULATORS

Mimic the environment and functionality of a control room The process is replaced by a real time dynamic simulation

Real process

Simulator

4 TRAINING SIMULATOR AIMS

- Facilitate the knowledge of the process and its control system
- Achieve uniform operation among shifts
- Learn how to operate the process in an optimal way
- Learn how to react in unfrequent but difficult situations
- Identify faulty situations and learn how to correct them

ADVANTAGES OF A TRAINING SIMULATOR

✓ It allows learning by "experimenting" on the process , What happens if...? What should I do for...?

✓ Experiments on the real process can be dangerous expensive, slow, not always done in the proper conditions,...

Simulation can be performed faster or slower than real time

✓ The efect of a change can be seen in isolation if needed, this is not the case in the real process

Simulation gives access to all variables of the process

 Study the best operation estrategies or control estructure

4 TRAINING SIMULATORS

Different simulators according to its aims and range:

4 CHARACTERISTICS

Mimic the control room environment + DCS

 ✓ Mimic the dynamic behavoiur of the process, both in normal and abnormal operating conditions

 Provide a set of predefined operating problems and malfunctions that are adequate for the training

✓ Real time (or acelerated) operation

ARCHITECTURE OF THE SIMULATOR

- Four main modules:
 - Dynamic process simulation (EcosimPro)
 - Distributed Control System (SCADA)
 - Supervisor console
 - Real time Comunication system
- PC based under Windows with OPC

ARCHITECTURE OF THE SIMULATOR

4 FUNCTIONS

Training Simulator

INSTRUCTOR

MODELING

Detailled dynamic process models based on first principles

Include normal behaviour and faults

Different classes:

 Concentrate / Distributed parameters

✓ Continuous / Batch

✓ Digital Control functions

A DYNAMIC SIMULATIONSimulation Tool: ECOSIMPRO

- Object oriented modelling tool with no predifined computational causality. It allows re-use of the models and hierarchical constructions.
- It generates simulation code after symbolic manipulation of the model equations in order to adapt them to the operating context.
- Good numerical solvers (DASSL sparse)
- Models are generated as C++ clases, allowing them an easy integration with other software components

A LIBRARIES OF MODELS

GENERIC

- Physico-chemical properties
- Ports
- Control elements
- Flow elements
- Basic process units

SECTIONS

- Destilery
- Boilers
- Sugar end
- Evaporation
- Depuration
- Difussion
- Dryer

EcosimPro Model

4 OPC / DCOM servers

Compiled Simulation Includes executables and

source files with the C++ classes that contains the simulation.

Ayuda da		Salida	Closeilae
ctorio de la simulación: nbre simulación: nbre expetimento:	tank1.p1	Nombre servidor:	SERVIDOR
CREAR SERVIDOR	OPC MODIFICAR CONFIGURACI		tado Creación Creación fichero simulación Complicación de ficheros de simulación Cesación ficheros marco OPC Compliación ficheros marco OPC Copia de ficheros
tana de estado			

OPC client DIF Tpo. Final Simulación: 3500000000 Tpo. Simulación: 10 CINT: 5 Estado Simulación: CORRIENDO ... Tpo Calculo: 2989.84815109183 Tpo Total: 2990.03672254435 0 Esperas: FTB: 1 Tpo Perdido: 18392 ESPERA: 1992 Arrangue/Pausa **OPC** server

Softing OPC Toolbox Demo Clien/

CTA OPC DIFUSIONFALLOSENC

Esorbural ectura Xp 03-fc-01

EsorturaLectura.MA_00-fic-01

Escriturat ectura man 03-fic-01

EsorkuraLectura.Re_03-fic-01 EsorkuraLectura.Ti_00-fic-01

Escritural.ectura.u_03-fic-01
 Escritural.ectura.y_03-fic-01
 Simulacion.Tempo Simulacion

Simulacion Tiempo Si

EcohaslechasTo

EscrituraLectura MA_

Ecolual ectura man

EscolusLectura Re_. 92,7534583.

OPC Servers DA Browse DA Itema AE Events Errors

Escritural ectura Ti 0. 100

C Group

Simulation modules encapsulated as OPC/DCOM servers

TimeStamp Server 124223278 CTA OP

12.4216.278 CTA 0PC

124216278 CTA 0P

12.4216.278 CTA 8PC

12.42.23.278 CTA OPC

12.42.16.278 CTA OPC

124223278 CTA OPC 124223278 CTA OPC

G000

6000

6000

6000

6000

6000

Server generator

4 MMI SCADA / EDUSCA.

✓ Information:

- Process Schematics
- Tables of variables
- Alarms
- Trends
- Historic trends
- Bar graphs

Operation:

- Change set points / MV
- Man / Auto
- Tuning
- Alarms recognition

A SCADA CONFIGURATION.

4 Distributed simulation

Data Interchange Program

(Data Interchange & Synchronization)

5 PC under W

A INSTRUCTOR MODULE

On top of the operators console functions, the one of the instructor includes:

- Modifies process variables
- Activate/ Deactivate faults
- Selects pre-defined training sessions (changes in production levels, faults...)
- Starts in different operating condictions
- Timing of the simulation

4 Operating the Simulator

DEMOS

Start the simulator

Navigate in the screens

How to use the operator screens....

.... And the toolbars

Operating the Instructor console

DEMO

Instructor console

A TRAINING SESSION

Lecturing in the classrooom on the process units, process fundamentals, process operation and control basis.

3 Practical work in the full scope simulator

2 Simulators of process units

4 Evaluation

4 Classroom.

Lecturing on:

✓ Process

- Fundamentals of process units
- ✓ Process operation
- ✓ Control system
- How to operate the simulator

NIVEL DE JUGO DEL DEPOSITO DE ANTEEVAPORACION

OBJETIVO:

Se trata de mantener el suministro de jarabe para la depuración, y evitar su interrupción ante cualquier corte en el suministro de jugo procedente de depuración. Para ello se mantiene en el depósito una cantidad mínima de jugo que permita asegurar el funcionamiento continuo de la depuración.

FUNCIONAMIENTO:

Para mantener el nivel del tanque entre límites, se modifica el caudal de extracción de jarabe en la 4ª caja. La modificación de este caudal se trasmite al resto de las cajas, hasta llegar al caudal de extracción del depósito de anteevaporación.

Manuals + Slides

Process units simulators

Dedicated process units simulators, aimed to allow practicing on the process unit behaviour and operation of its control system

Friendly user interface Fast response

4 Process Units

Models:

- Heat exchanger
- Evaporator
- Filter
- Carbonatation tower
- Vacuuum pan
- Boiler
- Dryer
- Storage tank
- Destillation column

4 OPERATION OF THE SIMULATOR

DEMO

How to operate the process

Example: - OPERATION: Change the output brix of the evaporation station - FAULT DETECTION: Non-condensable gases valve closure

Evaluation.

- Storage / Recovery of system states for:
 - Analysis
 - Repeat situation
- Supervision by the instructor
- Discusion of alternatives

Documentation

- Operating the simulator
- Operating the different sections of the factory

Conclusions

✓ Tested at factory director level and undergraduate students

✓ At present is under evaluation at the factories

✓ Key points:

✓ Close links with users

Rapid adaptation, Development times

✓ Degree of accuracy / general

- ✓ Real time / acelerated time
- Advanced control
- ✓ Predictive simulation

Para más información

Contacte con:

CENTRO DE TECNOLOGÍA AZUCARERA c/Real de Burgos s/n. Edificio Alfonso VIII 47011 Valladolid ESPAÑA Tfno: +34 983 42 35 63 Fax: +34 983 42 36 16 <u>http://www.cta.uva.es/</u> simulador@cta.uva.es