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Today’s process plants

More instrumentation
and systems

More technology More complex 
processes

More norms
and regulations

Reduced
technical staff

Higher market
pressures

More data than ever



From data to knowledge

 Huge amount of data available in 
real time or historians. 

 Better instrumentation and new 
sensors

 With less trained people in the 
control room or the technical 
teams, supporting tools are required 
for process safety, process 
behaviour predictions, help in 
Abnormal Situation 
Management,…

 Models and simulations, decision 
support systems, etc., are 
recognized as elements to condense 
knowledge

 The focus is on software 
applications at the MES level



Models

 There is a lot of interest in the 
optimal (economic) operation 
of the processes

 Models play a key role in 
supporting the decision 
making process

 Advanced Control  and 
Economic Optimization  are 
the right tools

 Successful implementation 
requires suitable models and 
process information

 Few tools for estimating 
earnings and improvements

Process

Basic Control

MPC

RTO

Dynamic

Static

SP



Data / Information

From data to 
reliable and 
coherent 
information

Complex decisions 
taken at different 
levels 



Plant data

Some measurements 
are not consistent or 
unreliable

There are many 
unmeasured 
variables

Model parameters 
need to be estimated



Inconsistencies



Inconsistences



Data reconciliation

Use plant/lab measurements and knowledge 
stored in the models to:
– Estimate the values of all variables and model 

parameters coherent with a process model and as 
close as possible to the measurements

– Detect and correct inconsistencies in the 
measurements

Formulated as an optimization problem



Data reconciliation
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A certain degree 
of redundancy in 
the 
measurements is 
required



Redundancy
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2 equations
6 variables

More than 4 
measurements are 
required to avoid 
having a unique or 
multiple solutions

Mass balances

F  flow
X composition



Data reconciliation

F1 6.9

F2 2

F3 5.1

3 measurements,  affected  
by noise, errors, etc.

Redundant variables
F1 = F2 + F3

Estimated values must 
satisfy the model

True 
value

Measured
value

Probalility of a measured value 
xi around its true value (that 
verifies the model)
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Implicitly, we assume 
a gaussian distribution 
in the measurements



Data reconciliation

 Criterion (ML): Maximize the probability that the 
measured value of each variable xm be equal to the 
true one, which verifies the model x (o minimize its 
negative log)
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Data reconciliation

F1 6.9

F2 2

F3 5.1

F1 + F2 + F3 = 0
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Data reconciliation

MODEL
Outputs y, u Measurements 

ym, um

Optimization
problem
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Feasibility
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Normalization:  span, variance, instrument precision,…
Feasibility: slack variables incorporated
α, β :  relative importance of the variables and eliminate 
variables affected with gross errors
Identificability, regularization,…



Gross errors

F1 9.9

F2 2

F3 5.1

F1 + F2 + F3 = 0

True value

Gross errors increase the dispersion and 
distort the solution

The errors are spread through all 
variables

Distribution 
with gross 
errors
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Detecting gross errors

Analyse residuals with data 
without gross errors

Analyse residual of current data  
PCA

Test for significant differences 
and, in particular, for the largest  
ones and locate the variables  that 
most contribute to them

Two approaches:  • Gross errors detection and measurement removal
• Use of robust estimators



Gross errors
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In practice, gross errors can be detected by a combination of rule base and 
cyclic solution of the optimization problem. After an initial removal of a 
set of measurements from the cost function using rules, the solution is 
checked against the variance of the signal and those variables with 
measurements outside the 3σ band,  are removed again.



Data Reconciliation- Gross errors

Event • Place20/12/2019

MODEL
Outputs y, u

Measurements 
ym, um

Optimization
algorithm

Inputs u

θ

Check for gross errors

α,β
Reconciled 
valuesCycle until no gross 

errors are detected

Errors

Two approaches:  • Gross errors detection and measurement removal
• Use of robust estimators



Robust Estimators
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If the distribution of the measurement 
errors  εj is non-Gaussian, as may happen 
if gross errors are present, the LS 
estimation may give incorrect results as it 
is not robust against deviations from the 
assumed Gaussian distribution.

The robustness of a ML-estimator against 
deviations from non-Gaussianity is 
measured by the influence function, which 
is proportional to the first derivative of the 
estimator. The estimator is robust if the 
influence function is bounded as the 
residuals go to infinity.

In particular, the LS estimator 
is not robust as the derivative  
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Robust estimators
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Robust estimators use different cost 
functions, such as the Fair function F, 
that fulfils the robustness property: 
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Redescending Función
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Welsch
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95% asymptotic 
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standard normal 
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obtained with the 
tuning constant  
c = 2.9846



Data reconciliation

Data 
reconciliation

Static Dynamic

Steady state detector

Data averaged over 
a period of time

Dynamic 
optimization 
problem

Batch

Open field



Beet sugar factory
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Sugar plant DR software

 Main elements:
 Periodic characterization of the plant status, using a steady 

model of the sugar plant.
 On line connection with the plan Distributed Control System 

(DCS) to obtain, the measured variables necessary for the 
balances and model identification.

 Data reconciliation, correcting measured variables in a way 
that the model is adjusted and calculating at the same time that 
unknown variables and model parameters. 

 As a by-product of the data reconciliation, key performance 
indicators are estimated from calculated values in the 
reconciliation.



Models

Static
Mass energy balances
Flows, pressures
Equations and properties of the application 

domain
Formulated in the EcosimPro environment
Measurements averaged for a period of time
Rules to eliminate bad measurements 



Data reconciliation

EcosimPro Simulation
gives J(u,x(t)), g 

Optimizer
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Solved with a 
sequential approach



Implementation in EcosimPro

EcosimPro 
dynamic / static

model

Open loop 
optimization

Optimization 
assistant

C++ class

Simulated process

dll + 
OPC

Real time 
application

Results in simulation

C++ class

External application



SCADA implementation



DR system / SCADA



DR system SCADA



Information

 Detection of inconsistent measures. Help in fault detection.
 KPI: Evaluation of energetic behaviour indexes, efficiency, 

comparison between process heat transfer coefficients versus 
theoretical coefficients….

 Estimation of all unmeasured variables, some of them relevant 
for the energy evaluation such as steam consumptions.

 Keeping track of the time evolution of key variables during the 
sugar beet campaign, helping managers in locating 
malfunctions in the process or equipment fouling and planning 
maintenance



Inconsistencies



Key Performance Indicators KPI

Heat exchanger coefficients

Boiler efficiency



Hydrogen network



Arquitecture



Data treatment
key role played by the data treatment in the success of the application 
in the refinery. If data from the SCADA system are not analyzed and 
filter previously to their use in the numerical methods, there are no 
chances to obtain good results. This layer is composed of a set of rules 
that detect faults and information inconsistences in the raw data and 
decides which options are the most adequate ones. For instance, 
detecting when a flow is actually zero, a plant is stopped, a 
measurement is out of range, etc. It has been developed for specific 
cases combining physical knowledge and heuristic rules. 
As a result of these rules, the system adjust the model parameters and 
optimization weights, so that, e.g. a measurement can be eliminated 
from the data reconciliation cost function. Mayor changes take place 
when a plant is not operating. To deal with these cases, the network is 
formulated as a superstructure that allows to remove groups of 
equations depending on the value of binary variables that represent the 
state of the plants.



DR



DR



HDS
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DR

Aporte CBP Conc. S salida

Flujo reciclo

Pureza reciclo Pureza BP

Flujo BP

18 days



Conclusions

Data reconciliation is a model based approach 
to obtain coherent information from the plant.

 It allows to compute KPI to follow the time 
evolution of the process operation.

Formulated as an optimization problem.
Open problems:

– Gross error detection
– Speed, batch, non-independent variables,…
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