Dynamic Optimization

Prof. Cesar de Prada ISA –UVA prada@autom.uva.es

Prof. Cesar de Prada ISA-UVA

Outline

- > Dynamic optimization problems
- > Parameterization
- Sequential approach
- Simultaneous approach
- Path constraints
- > Applications
- Software

A dynamic system: batch reactor

The operation of an endothermic batch reactor last for one hour. It loads an amount A, which reacts according to the parallel reactions $A \rightarrow B$ and $A \rightarrow C$, but only the B product has commercial value. The speeds of reaction are given by:

> $k_B = 10^6 \exp(10000/RT)$ $k_C = 5*10^{11} \exp(20000/RT)$

Find the temperature profile that maximizes the final production of B, if the temperature must always be bellow 139 °C

Dynamic Optimization (DO)

Dynamic Optimization

$$\begin{array}{ll} \displaystyle \min_{u(t),x(t),x_0,t_f} & J(u) = \int_{t_0}^{t_f} C(x,u) dt \\ \displaystyle \frac{dx}{dt} = f(x,u,z), \quad x(t_0) = x_0 \\ h(x,u,z) = 0 \\ g(x,u,z) \leq 0 \end{array} \begin{array}{ll} \checkmark & \text{Many types:} \\ \checkmark & \text{Integral or algebraic cost} \\ \checkmark & \text{Initial value problems} \\ \checkmark & \text{TPBV problems} \\ \checkmark & \text{Final time problems} \\ \checkmark & \text{DAE} \end{array} \begin{array}{ll} \checkmark & \text{Final time problems} \\ \checkmark & \text{DAE} \\ \checkmark & \text{DAE or ODE} \\ \checkmark & \dots \end{array}$$

Problem: infinite number of decision variables and constraints

Decision variables parameterization

6

Control Vector Parameterization CVP

Prof. Cesar de Prada ISA-UVA

Solving DO problems

> Two main approaches:

- Solving the differential equations with a dynamic simulator (Sequential approach) CVP
- Discretizing the dynamic system to convert it into an algebraic one (Simultaneous approach)
- They are more computational intensive than standard NLP problems

Sequential approach

Multiple calls to the simulator from the NLP code

9

 $\min_{u(t),x_0,t_f} \quad J(\mathbf{u}) = \int_{t_0}^{t_f} C(\mathbf{x},\mathbf{u}) dt$ $\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, \mathbf{u}, \mathbf{z}), \quad \mathbf{x}(t_0) = \mathbf{x}_0$

The DO problem is converted into a NLP one, with a number of u variables equal to the problem degrees of

Path constraints

 $Max g((x(t)) \le M$

The sequential approach uses a smaller number of decision variables (the CVP of u) than the simultaneous one, but imposing constraints over time on states and algebraic variables is more difficult as they are computed inside the simulation

Solutions:

- Choose several internal points and impose the constraint at this points
- Compute the max or min of x(t) and impose the constraint on it

Path constraints

Prof. Cesar de Prada ISA-UVA

Dynamic Optimization (DO) example

Starting from a certain operation point, and performing a single change in the process MVs, bring the process to the maximum production point respecting a set of constraints over the transient.

Dynamic Optimization

Cesar de Prada ISA-UVA

DO in EcosimPro Experiment

Component / Variables

Constraints / Cost function

Experiment /Functions

USE OPTIM_METHODS EIDAS calculoSens

CONST INTEGER numC = 3 CONST INTEGER numU = 2 --CONST INTEGER numX = 4

- CONST INTEGER numC = 3 -- numero de restricciones del problema
 - -- numero de variables de decisión
- --CONST INTEGER numX = 4 -- número de variables de estado + 1 (costo)

FUNCTION INTEGER coste_y_restricciones (IN REAL esnopt_x[], IN INTEGER needF, OUT REAL esnopt_F[], IN INTEGER explicit_derivatives, IN INTEGER needG, OUT REAL esnopt_G[])

END FUNCTION

.

Experiment / Functions

FUNCTION NO_TYPE functionResiduos(.....)

END FUNCTION

```
FUNCTION NO_TYPE functionQuadraturas( ..... )
```

```
-- funciones de cuadraturas, fijar la dimension de F_optim
FOR( i IN 1,4 )
quad[i] = F_optim[i]
END FOR
END FUNCTION
```

FUNC_PTR<ptrFunRes> ptrRes = funcionResiduos
FUNC_PTR<ptrFunRes> ptrQuad = funcionQuadraturas

Experiment / Variables

EXPERIMENT optim ON reactor_ab_dynamic_max.open_loop

DECLS

REAL xlow[numU] REAL xupp[numU] REAL Flow[numC + 1]

- REAL dec_var[numU] -- valor inicial de las variables de decision
 - -- valor inferior de las variables de decision
 - -- valor superior de las variables de decision
 - -- valor inferior de la funcion objetivo y las restricciones
- **REAL Fupp[numC + 1]** -- valor superior de la funcion objetivo y las restricciones
- INTEGER calcularSens = 1 -- igual a 1 si se calculan sensibilidades
- **INTEGER** infoESnopt = 0 -- informacion interna de SNOPT

OBJECTS

VECTOR_STRING nombresX -- variable auxiliar para la inicialización de las sensibilidades

Cesar de Prada ISA-UVA

Experiment / INIT

INIT

-- initial values for state variables cA = 2.891 Tr = 51.5 T = T0 $J_coste = 0$

BOUNDS

-- Set equations for boundaries: boundVar = f(TIME;...)Fr = 50 q = 2

Experiment

-- inicialización de las variables de decisión, y los límites -- addU(nombre de la variable, valor inicial de la misma, booleano que indica si el parámetro es un valor inicial) calculoSens.addU("q", q, FALSE) calculoSens.addU("Fr", Fr, FALSE)

BODY

Experiment

TIME = 0TSTOP = 10CINT = 0.1

- -- Inicializacion del algoritmo de integracion y cálculo de sensibilidades
- -- Configurar la tolerancia en el cálculo de sensibilidades (opcional) calculoSens.setTol(1e-5)
- -- inicialización de los límites de las restricciones y la función de coste

Flow[1] = -1.0e6Fupp[1] = 1.0e6Flow[2] = Liminfx Fupp[2] = 1 Flow[3] = 0 Fupp[3] = 0 Flow[4] = 0 Fupp[4] = 0

- Flow[2] = Liminfx -- End point constraint
 - -- End point constraint
 - -- Path constraint
 - -- Path constraint

Cesar de Prada ISA-UVA

Experiment /SNOPT

esnopt_init (numU, numC)

esnopt_set_variables_bounds_and_initial_values (xlow, xupp, dec_var) esnopt_set_constraints_bounds_and_initial_values (Flow, Fupp, F_optim) esnopt_set_cost_function_and_constraints (coste_y_restricciones)

esnopt_set_explicit_derivatives (calcularSens)

esnopt_set_function_precision (1.0e-5)
esnopt_set_iterations_limit (200)

Calling the optimizer

infoESnopt = esnopt -

-- Final de la optimización, obtención de los resultados para la simulacion. setSilentMode(FALSE) SET_REPORT_ACTIVE("#MONITOR",TRUE) esnopt_print_data () esnopt_get_variables_values(dec_var) esnopt_free () Getting the solution

Experiment

-- Llamada al integrador RESET()

-- Modificación de los parámetros con los nuevos valores obtenidos

 $q = dec_var[1]$ Fr = dec_var[2]

TIME = 0CINT = 0.1INTEG()

END EXPERIMENT

Cost and constraints

FUNCTION INTEGER coste_y_restricciones (IN REAL esnopt_x[], , IN INTEGER needF, OUT REAL esnopt_F[], IN INTEGER explicit_derivatives, IN INTEGER needG, OUT REAL esnopt_G[])

DECLS

BODY

-- Actualizar las variables de decisión a los valores que propone el optimizador calculoSens.setU("q", esnopt_x[1]) calculoSens.setU("Fr", esnopt_x[2])

Cost and Constraints

Introduccion de los gradientes de la funcion de costo y restricciones a SNOPT
--si la funcion es de camino, hay que introducir la derivada parcial de la cuadratura
- (arr_quadsen), en caso contrario, si la restricción es de punto final, al usar
- arr_quadsen_p se usa la derivada parcial del valor de la función. IF (explicit_derivatives == 1) THEN
- derivadas de las 4 F_optim respecto a las 2 variables de decision esnopt_G[1] = arr_quadsen[1] -- der(F-optim[1]/d q esnopt_G[2] = arr_quadsen[2] -- der(F-optim[1]/d Fr

> esnopt_G[3] = arr_quadsen_p[3] -- der(F-optim[2]/d q esnopt_G[4] = arr_quadsen_p[4] -- der(F-optim[2]/d Fr

esnopt_G[5] = arr_quadsen[5] esnopt_G[6] = arr_quadsen[6] esnopt_G[7] = arr_quadsen[7] esnopt_G[8] = arr_quadsen[8]

Cost and Constraints

- -- Introducción de los valores de las funciones a SNOPT
- -- si la funcion es de camino, hay que introducir la cuadratura (arr_quad)
- -- en caso contrario, si la restricción es de punto final, al usar F_optim se
- -- usa el valor de la función.

 $esnopt_F[1] = arr_quad[1]$ $esnopt_F[2] = F_optim[2]$ $esnopt_F[3] = arr_quad[3]$ $esnopt_F[4] = arr_quad[4]$

RETURN 0 END FUNCTION

Results in EcosimPro (EcoMonitor)

Cesar de Prada ISA-UVA

Simultaneous approach

> It is based in the discretization of the equations

The discretized model has only algebraic equations and can be solved with NLP methods.

Discretization

One important problem associated with the simultaneous approach is the discretization of the differential equations

$$\begin{split} \min_{\mathbf{u}(t),\mathbf{x}(t),\mathbf{x}_0,t_f} & J(\mathbf{u}) = \int_{t_0}^{t_f} C(\mathbf{x},\mathbf{u}) dt \\ \frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x},\mathbf{u},\mathbf{z}), \quad \mathbf{x}(t_0) = \mathbf{x}_0 \\ \mathbf{h}(\mathbf{x},\mathbf{u},\mathbf{z}) = \mathbf{0} \\ \mathbf{g}(\mathbf{x},\mathbf{u},\mathbf{z}) \leq \mathbf{0} \end{split}$$

Simple methods, such as the Euler discretization are not robust and lead to numerical problems with stiff systems

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} \approx \frac{\mathbf{x}(t + \Delta_{t}) - \mathbf{x}(t)}{\Delta_{t}} = \frac{\mathbf{x}_{k+1} - \mathbf{x}_{k}}{\Delta_{t}}$$
$$\mathbf{x}_{k+1} = \mathbf{x}_{k} + \mathbf{f}(\mathbf{x}_{k}, \mathbf{u}_{k}, \mathbf{z}_{k})\Delta_{t}$$

Other methods such as higher order implicit integration ones or collocation methods should be used

Prof. Cesar de Prada ISA-UVA

Simultaneous approach

The number of equations increases by a factor of N and the number of decision variables increases from the CVP of u to u_k , x_k , z_k with respect to the sequential approach But it is easier to impose constraints on the time evolution of the states and algebraic variables (path constraints) by limiting , x_k , z_k at the discretization points Prof. Cesar de Prada ISA-UVA

La integración de sistemas stiff usa métodos de paso y estructura variable para mantener el error de integración bajo cotas.

El uso de métodos de paso fijo obliga a usar un gran número de intervalos, resultando en un alto número de ecuaciones y variables y no garantiza la calidad

Collocation on finite elements

The time evolution of the variables is approximated by polynomial interpolation on the values of the variable on P+1 collocation points located at fixed positions τ_j in every element k. Different methods exist

$$\mathbf{x}(t) \approx \sum_{j=0}^{P} \mathbf{P}_{j}(\tau) \mathbf{x}_{kj}$$
$$t = t_{k} + \tau \Delta_{k} \quad \tau \in [0,1)$$
$$\dot{\mathbf{x}}(t) \approx \sum_{j=0}^{P} \frac{\dot{\mathbf{P}}_{j}(\tau) \mathbf{x}_{kj}}{\Delta_{k}}$$

Prof. Cesar de Prada ISA-UVA

Colocación en elementos finitos

En cada intervalo $(t_{k-1}, t_k]$ la solución x se aproxima por una fórmula polinómica. Esto proporciona una aproximación suave en elemento, al tiempo que permite discontinuidades en la señal de control. Pueden usarse muchos tipos de aproximaciones polinómicas El número de elementos r

K no tiene por que ser grande

Colocación en elementos finitos

Una posibilidad es aproximar la evolución temporal de las variables por una combinación lineal de polinomios conocidos $P_j(\tau)$ de orden P. Típicamente se usan polinomios de interpolación de Lagrange.

$$\mathbf{x}(t) \approx \sum_{j=0}^{P} \mathbf{P}_{j}(\tau) \mathbf{x}_{kj} \qquad \begin{array}{l} \text{parametros} \\ \text{parametros} \\ \text{a calcular} \end{array}$$
$$\mathbf{t} = \mathbf{t}_{k-1} + \tau \Delta_{k} \quad \tau \in (0,1] \quad \mathbf{k} = 1, \dots, \mathsf{K}$$
$$\dot{\mathbf{x}}(t) \approx \sum_{j=0}^{P} \frac{\dot{\mathbf{P}}_{j}(\tau) \mathbf{x}_{kj}}{\Delta_{k}} \qquad \tau \text{ Tiempo} \\ \text{normalizado} \end{array}$$

Polinomios de interpolación de Lagrange

Polinomios de Lagrange

$$\begin{split} P_{j}(\tau) &= \prod_{i=0, i\neq j}^{P} \frac{\tau - \tau_{i}}{\tau_{j} - \tau_{i}} \\ P_{0} &= \frac{\tau - \tau_{1}}{\tau_{0} - \tau_{1}} \frac{\tau - \tau_{2}}{\tau_{0} - \tau_{2}} \frac{\tau - \tau_{3}}{\tau_{0} - \tau_{3}} \\ P_{1} &= \frac{\tau - \tau_{0}}{\tau_{1} - \tau_{0}} \frac{\tau - \tau_{2}}{\tau_{1} - \tau_{2}} \frac{\tau - \tau_{3}}{\tau_{1} - \tau_{3}} \\ P_{2} &= \frac{\tau - \tau_{0}}{\tau_{2} - \tau_{0}} \frac{\tau - \tau_{1}}{\tau_{2} - \tau_{1}} \frac{\tau - \tau_{3}}{\tau_{2} - \tau_{3}} \\ P_{3} &= \frac{\tau - \tau_{0}}{\tau_{3} - \tau_{0}} \frac{\tau - \tau_{1}}{\tau_{3} - \tau_{1}} \frac{\tau - \tau_{2}}{\tau_{3} - \tau_{2}} \\ x(t_{k-1} + \tau_{j}\Delta_{k}) &= x_{kj} \end{split}$$

BY

Colocación en elementos finitos

Se impone que se satisfagan las ecuaciones DAE en los puntos de colocación.

Esta condición proporciona un conjunto de ecuaciones que permiten calcular los coeficientes x_{ki} desconocidos

$$F(\dot{\mathbf{x}}, \mathbf{x}, \mathbf{u}(\mathbf{p})) = 0$$

$$F(\sum_{j=0}^{P} \frac{\dot{P}_{j}(\tau_{i}) \mathbf{x}_{kj}}{\Delta_{k}}, \mathbf{x}_{ki}, \mathbf{u}(\mathbf{p})) = 0 \quad \mathbf{k} = 1, ... \mathsf{K}$$

Los P+1 puntos de colocación se sitúan en posiciones fijas τ_i en cada elemento k. Existen diferentes métodos para situarlos

$$F(\sum_{i=0}^{P} \frac{P_{i}(\tau_{i})\mathbf{x}_{ki}}{\Delta_{k}}, \mathbf{x}_{ki}, \mathbf{u}(p)) = 0 \quad \begin{array}{l} \mathbf{k} = 1, \dots \mathbf{K} \\ \mathbf{i} = 1, \dots \mathbf{P} \end{array}$$

Para reducir el número de polinomios (P) se escogen polinomios ortogonales

 $\int_0^1 P_j(\tau) P_i(\tau) d\tau = 0 \quad i \neq j$

Shifted Gauss-Legendre and Radau roots as collocation points.

De p K	Legendre Roots	Radau Roots
	0.500000	1.000000
2	0.211325	0.333333
	0.788675	1.000000
3	0.112702	0.155051
	0.500000	0.644949
	0.887298	1.000000
4	0.069432	0.088588
	0.330009	0.409467
	0.669991	0.787659
	0.930568	1.000000
5	0.046910	0.057104
	0.230765	0.276843
• \$	0.500000	0.583590
	0.769235	0.860240
	0.953090	1.000000

$$\begin{split} P_{P}^{\text{Legendre}}(\tau) &= \sum_{j=0}^{P} (-1)^{P-j} \tau^{j} \gamma_{j} \\ \gamma_{0} &= 1 \\ \gamma_{j} &= \frac{(P-j+1)(P+j)}{j^{2}} \\ \text{Dan mas} \\ \text{exactitud} \end{split}$$

 τ_0 es siempre = 0

Los puntos de colocación τ_i , i = 1,...,P se seleccionan como las raíces de polinomios de tipo Gauss-Jacobi, típicamente:

$$\begin{split} P_{P}^{Radau}\left(\tau\right) &= \sum_{j=0}^{P} \left(-1\right)^{P-j} \tau^{j} \gamma_{j} \\ \gamma_{0} &= 1 \\ \gamma_{j} &= \frac{(P-j+1)(P+j+1)}{j^{2}} \\ & \text{Dan mas} \\ \text{robustez} \end{split}$$

Х

 I_{k-1}

Se impone la continuidad de las trayectorias a lo largo de los elementos finitos $(t_{k-1}, t_k]$ mediante:

t_k

$$F(\sum_{j=0}^{P} \frac{P_j(\tau_i) \mathbf{X}_{kj}}{\Delta_k}, \mathbf{X}_{ki}, \mathbf{u}(p)) = 0 \quad \begin{array}{l} \mathsf{k} = 1, \dots \mathsf{K} \\ \mathsf{i} = 1, \dots \mathsf{P} \end{array}$$

En lugar de estas ecuaciones, en los puntos $\tau_0 = 0$ se usa la continuidad de los estados, y en t = 0 las condiciones iniciales para generar ecuaciones que las sustituyan y que garanticen soluciones acorde a lo deseado

$$\mathbf{x}(\mathbf{t}_{k}) = \mathbf{x}_{k+1,0} = \mathbf{x}_{k,P}$$
$$\mathbf{x}(\mathbf{t}_{0}) = \mathbf{x}_{10} = \mathbf{x}_{0}$$

tiempo

 $\mathbf{u}(t) \approx \sum_{j=1}^{P} \overline{P}_{j}(\tau) \mathbf{u}_{kj}$ $\overline{P}_{j}(\tau) = \prod_{i=1, i \neq j}^{P} \frac{\tau - \tau_{i}}{\tau_{j} - \tau_{i}}$ $t = t_{k-1} + \tau \Delta_{k} \quad \tau \in (0, 1]$

No se impone la continuidad de las trayectorias de control en los elementos finitos $(t_{k-1}, t_k]$

Pueden usarse métodos simultáneos de optimización con sistemas inestables

Ejemplo

Integrar entre t = 0 y 1

$$\dot{x} = x^2 - 2x + 1$$
 $x(0) = -3$

Se seleccionan K = 2 elementos finitos de igual tamaño $\Delta_k = (1 - 0)/2 = 0.5$ P = 3 puntos de colocación

Los puntos de colocación de Radau para P =3 son:

 $\tau_0 = 0 \ \tau_1 = 0.155051 \ \tau_2 = 0.644949 \ \tau_3 = 1$

Ejemplo

Los puntos de colocación de Radau para P =3 son: $\tau_0 = 0$ $\tau_1 = 0.155051$ $\tau_2 = 0.644949$ $\tau_3 = 1$

$$P_{j}(\tau) = \prod_{i=0, i \neq j}^{P} \frac{\tau - \tau_{i}}{\tau_{j} - \tau_{i}}$$

$$P_0 = \frac{\tau - \tau_1}{\tau_0 - \tau_1} \frac{\tau - \tau_2}{\tau_0 - \tau_2} \frac{\tau - \tau_3}{\tau_0 - \tau_3} = -10\tau^3 + 18\tau^2 - 9\tau + 1$$

$$P_{1} = \frac{\tau - \tau_{0}}{\tau_{1} - \tau_{0}} \frac{\tau - \tau_{2}}{\tau_{1} - \tau_{2}} \frac{\tau - \tau_{3}}{\tau_{1} - \tau_{3}} = 15.5808 \tau^{3} - 25.6296\tau^{2} + 10.0488\tau$$

$$P_{2} = \frac{\tau - \tau_{0}}{\tau_{2} - \tau_{0}} \frac{\tau - \tau_{1}}{\tau_{2} - \tau_{1}} \frac{\tau - \tau_{3}}{\tau_{2} - \tau_{3}} = -8.9141\tau^{3} + 10.2963\tau^{2} - 1.3821\tau$$

$$P_{3} = \frac{\tau - \tau_{0}}{\tau_{3} - \tau_{0}} \frac{\tau - \tau_{1}}{\tau_{3} - \tau_{1}} \frac{\tau - \tau_{2}}{\tau_{3} - \tau_{2}} = 3.3333\tau^{3} - 2.6667\tau^{2} + 0.3333\tau^{3}$$
$$x(t_{k-1} + \tau_{j}\Delta_{k}) = x_{kj} \qquad \mathbf{x}(t) \approx \sum_{j=0}^{P} P_{j}(\tau)\mathbf{x}_{kj} \qquad t = t_{k-1} + \tau\Delta_{k} \quad \tau \in (0,1]$$

Los puntos de colocación de Radau para P = 3 son: Ejemplo $\tau_0 = 0$ $\tau_1 = 0.155051$ $\tau_2 = 0.644949$ $\tau_3 = 1$

k = 1,2

 $\mathbf{x}(\mathbf{t}_{k-1} + \tau_{j}\Delta_{k}) = \mathbf{x}_{kj}$ $\mathbf{t} = \mathbf{t}_{k-1} + \tau \Delta_k \quad \tau \in (0,1]$

Ejemplo

En los puntos de colocación τ_i :

 $\dot{\mathbf{x}} = \mathbf{x}^2 - 2\mathbf{x} + 1$ $\mathbf{x}(0) = -3$

$$\sum_{j=0}^{3} \frac{\dot{P}_{j}(\tau) \mathbf{x}_{kj}}{0.5} = \mathbf{x}^{2} - 2\mathbf{x} + 1 \qquad \mathbf{k} = 1,2$$

$$\sum_{j=0}^{3} \frac{\dot{P}_{j}(\tau_{i}) \mathbf{x}_{kj}}{0.5} = \mathbf{x}_{ki}^{2} - 2\mathbf{x}_{ki} + 1 \qquad \mathbf{k} = 1,2$$

$$i = 1, \dots,3$$

$$\begin{aligned} (-30\tau_{i}^{2} + 36\tau_{i} - 9)x_{10} + (46.7423\tau_{i}^{2} - 51.2592\tau_{i} + 10.0488)x_{11} + \\ + (-26.7423\tau_{i}^{2} + 20.5925\tau_{i} - 1.3821)x_{12} + (10\tau_{i}^{2} - 5.3333\tau_{i} + 0.3333)x_{13} = \\ = 0.5(x_{1i}^{2} - 2x_{1i} + 1) \qquad i = 1,2,3 \\ (-30\tau_{i}^{2} + 36\tau_{i} - 9)x_{20} + (46.7423\tau_{i}^{2} - 51.2592\tau_{i} + 10.0488)x_{21} + \\ + (-26.7423\tau_{i}^{2} + 20.5925\tau_{i} - 1.3821)x_{22} + (10\tau_{i}^{2} - 5.3333\tau_{i} + 0.3333)x_{23} = \\ = 0.5(x_{2i}^{2} - 2x_{2i} + 1) \qquad i = 1,2,3 \end{aligned}$$

$$\mathbf{x}(t_k) = \mathbf{x}_{k+1,0} = \mathbf{x}_{k,P} = \sum_{j=0}^{P} \mathbf{P}_j(1) \mathbf{x}_{k,j} \qquad \mathbf{x}(0.5) = \mathbf{x}_{20} = \mathbf{x}_{13} = \sum_{j=0}^{3} \mathbf{P}_j(1) \mathbf{x}_{1j}$$
$$\mathbf{x}(t_0) = \mathbf{x}_{10} = \mathbf{x}_0 \qquad \mathbf{x}(0) = \mathbf{x}_{10} = -3$$

8 incógnitas, 8 ecuaciones

Las condiciones iniciales y de continuidad proporcionan las otras dos ecuaciones

Ejemplo

 $\dot{x} = x^2 - 2x + 1$ x(0) = -3

Respuestas analítica y obtenida por colocación ortogonal

Software: GAMS

Entornos de modelado y optimización como GAMS, AIMMS, XPRESS, Gurobi,... pueden usarse tras la discretización

Software

Solución eficiente de problemas de gran escala

Pero no soporta:

- Discontinuidades
- Optimización mixta-entera
 Problemas de memoria
 5Entorno pobre de modelado

Computational Infrastructure for Operations Research (COIN-OR) Open source codes

> Sensibilidades paramétricas

CasADi es un entorno simbólico para optimización numérica que facilita la discretización e implementa diferenciación automática (gradientes y Hesianos).

Genera código C e implementa interfaces a códigos DAE y de optimización como SUNDIALS, IPOPT etc.

Se gestiona desde una interfaz con Python/Matlab

Diferenciación Automática

	Assignation	Derivatives	
	$w_1 = x_1$	$w'_1 = 1 \ (seed)$	
Ejemplo::	$w_2 = x_2$	$w_2' = 0$ (seed)	
$f = x_1 x_2 + \sin(x_1)$	$w_3 = w_1 w_2$	$w_3' = w_1' w_2 + w_1 w_2' = x_2$	
∂f	$w_4 = \sin(w_1)$	$w_4' = \cos(w_1)w_1' = \cos(x_1)$	
;?	$w_5 = w_3 + w_4$	$w_5' = w_3' + w_4' = x_2 + \cos(x_1)$	
Forward brobagation Hereitary and the set of the set			

5

Optimal control

Classical optimal control theory has its roots in the calculus of Variations. Typical problems are formulated as: $\min_{\mathbf{u}(t)} \quad \mathbf{J}(\mathbf{u}) = \phi(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} \mathbf{C}(\mathbf{x}, \mathbf{u}) dt$ $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t), \quad \mathbf{x}(t_0) = \mathbf{x}_0$ $t_0, t_f, \mathbf{x}_0 \quad \text{specified}$

The Lagrange multipliers approach and variational principle can be used to solve the problem. As the constraints are dynamic, the Lagrange multiplier vector $\lambda(t)$ is a function of time.

$$\min_{\mathbf{u}(t),\lambda(t)} \quad \overline{\mathbf{J}} = \phi(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} \{ \mathbf{C}(\mathbf{x},\mathbf{u}) + \lambda(t)' [\mathbf{f}(\mathbf{x},\mathbf{u},t) - \dot{\mathbf{x}}] \} dt$$

Hamiltonian

Using the Hamiltonian, defined as:

 $H(t) = C(\mathbf{x}, \mathbf{u}) + \lambda(t)' \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$

$$\overline{\mathbf{J}} = \phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} \{ \mathbf{C}(\mathbf{x}, \mathbf{u}) + \lambda(t)' [\mathbf{f}(\mathbf{x}, \mathbf{u}, t) - \dot{\mathbf{x}}] \} dt =$$

$$= \phi(\mathbf{x}(t_{f})) + \int_{t_{0}}^{t_{f}} \{ \mathbf{H}(t) - \lambda(t)' \dot{\mathbf{x}} \} dt = (\text{integrating by parts } \lambda \dot{\mathbf{x}})$$

$$= \phi(\mathbf{x}(t_{f})) - \lambda(t_{f}) \mathbf{x}(t_{f}) + \lambda(t_{0}) \mathbf{x}(t_{0}) + \int_{t_{0}}^{t_{f}} \{ \mathbf{H}(t) + \dot{\lambda}(t)' \mathbf{x} \} dt$$

Prof. Cesar de Prada ISA-UVA

NOC

 $\overline{\mathbf{J}} = \phi(\mathbf{x}(t_f)) - \lambda(t_f)' \mathbf{x}(t_f) + \lambda(t_0)' \mathbf{x}(t_0) + \int_t^{t_f} \left\{ \mathbf{H}(t) + \dot{\lambda}(t)' \mathbf{x} \right\} dt$ for optimality: $\frac{\partial \phi}{\partial x} \frac{\partial \mathbf{x}}{\partial \mathbf{u}}\Big|_{t_{t}} - \lambda(t_{f})' \frac{\partial \mathbf{x}}{\partial \mathbf{u}}\Big|_{t_{t}} + \int_{t_{0}}^{t_{f}} \left\{ \frac{\partial H}{\partial x} \frac{\partial \mathbf{x}}{\partial \mathbf{u}} + \frac{\partial H}{\partial \mathbf{u}} + \dot{\lambda}(t)' \frac{\partial \mathbf{x}}{\partial \mathbf{u}} \right\} dt = 0$ $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$ Now, by choising: $\dot{\lambda}(t)' = -\frac{\partial H}{\partial \mathbf{x}}$ $\lambda(t_f)' = \frac{\partial \phi}{\partial \mathbf{x}}\Big|_t$ $\frac{\partial H}{\partial \mathbf{u}} = 0$ $\mathbf{x}(t_0)$ given

The NOC are always satisfied

NOC

The NOC in terms of the Hamiltonian are given by:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t) \qquad \mathbf{x}(t_0) = \mathbf{x}_0 \qquad \mathbf{H} = \mathbf{C} + \lambda' \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$$
$$\dot{\lambda}(t)' = -\frac{\partial \mathbf{H}}{\partial \mathbf{x}} \qquad \lambda(t_f)' = \frac{\partial \phi}{\partial \mathbf{x}} \Big|_{t_f} \qquad \frac{\partial \mathbf{H}}{\partial \mathbf{u}} = 0$$

This is a TPBVP as part of the boundary conditions of the differential equations are given at t_f and part at t_0

Positive definite Hessian is required for sufficiency

Similar equations result for other formulations such as terminal constraints, free final time, etc. Prof. Cesar de Prada ISA-UVA